首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Based on elastic mechanics, the fluid–structure coupling theory and the finite element method, a high-speed railway wheel-rail rolling-aerodynamic noise model is established to realize the combined simulation and prediction of the vibrations, rolling noise and aerodynamic noise in wheel-rail systems. The field test data of the Beijing–Shenyang line are considered to verify the model reliability. In addition, the directivity of each sound source at different frequencies is analyzed. Based on this analysis, noise reduction measures are proposed. At a low frequency of 300 Hz, the wheel-rail area mainly contributes to the aerodynamic noise, and as the frequency increases, the wheel-rail rolling noise becomes dominant. When the frequency is less than 1000 Hz, the radiated noise fluctuates around the cylindrical surface, and the directivity of the sound is ambiguous. When the frequency is in the middle- and high-frequency bands, exceeding 1000 Hz, both the rolling and total noise exhibit a notable directivity in the directions of 20–30° and 70–90°, and thus, noise reduction measures can be implemented in these directions.  相似文献   

2.
Based on the analysis and measurement of the overall situation, import and export structure and international competitiveness of the various sectors of service trade in the Guangdong–Hong Kong–Macao Greater Bay Area, with the help of MATLAB and Gray System Modeling software, the synergy degree model was established to quantitatively analyze the synergy level of service trade in the Greater Bay Area with the help of grey correlation analysis method and entropy weight method. The results show that the overall development trend of service trade in the Guangdong–Hong Kong–Macao Greater Bay Area is good. The service trade industries in different regions are highly complementary and have a high degree of correlation. The potential for the coordinated development of internal service trade is excellent, and the overall situation of service trade in the Greater Bay Area is in a stage of transition from a moderate level of synergy to a high level of synergy. The Greater Bay Area can achieve industrial synergy by accelerating industrial integration and green transformation, establishing a coordinated development mechanism, sharing market platform, strengthening personnel security, and further enhancing the international competitiveness of service trade. The established model better reflects the current coordination of service trade in the Guangdong–Hong Kong–Macao Greater Bay Area and has good applicability. In the future, more economic, technological, geographic, and policy data and information can be comprehensively used to study the spatial pattern, evolution rules, and mechanisms of coordinated development in the broader area.  相似文献   

3.
4.
The ever-increasing travel demand has brought great challenges to the organization, operation, and management of the subway system. An accurate estimation of passenger flow distribution can help subway operators design corresponding operation plans and strategies scientifically. Although some literature has studied the problem of passenger flow distribution by analyzing the passengers’ path choice behaviors based on AFC (automated fare collection) data, few studies focus on the passenger flow distribution while considering the passenger–train matching probability, which is the key problem of passenger flow distribution. Specifically, the existing methods have not been applied to practical large-scale subway networks due to the computational complexity. To fill this research gap, this paper analyzes the relationship between passenger travel behavior and train operation in the space and time dimension and formulates the passenger–train matching probability by using multi-source data including AFC, train timetables, and network topology. Then, a reverse derivation method, which can reduce the scale of possible train combinations for passengers, is proposed to improve the computational efficiency. Simultaneously, an estimation method of passenger flow distribution is presented based on the passenger–train matching probability. Finally, two sets of experiments, including an accuracy verification experiment based on synthetic data and a comparison experiment based on real data from the Beijing subway, are conducted to verify the effectiveness of the proposed method. The calculation results show that the proposed method has a good accuracy and computational efficiency for a large-scale subway network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号