首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary. Three new complexes, namely [(nicotinic acid)2H]+I, [(2-amino-6-methylpyridine)H]+ (NO3), and the 1:1 complex between 1-isoquinoline carboxylic acid (zwitter ion form) and L-ascorbic acid were synthesized. The IR spectra revealed different types of hydrogen bonds in these compounds. The X-ray structure determination has shown the first compound to consist of a packing of [(nicotinic acid)2H]+ cations and I anions. In the dimeric cation the two nicotinic acid molecules (zwitter ions) are connected through hydrogen bonds (O–HO). Each dimer is further engaged in other hydrogen bonds with adjacent dimers giving 2D layers. The I ion is located at the inversion center. In the second compound the cation and anion are connected via hydrogen bonds formed between oxygen atoms of the NO3 anion and NH and NH2 of the cation generating a layer structure. All atoms are coplanar on mirror planes. In the 1:1 complex the two molecules are connected through hydrogen bonds formed between the two oxygen atoms of the carboxylate group of 1-isoquinoline carboxylic acid (zwitter ion) and the oxygen atoms of the two adjacent hydrogen groups of the L-ascorbic acid molecule. These complex molecules are engaged in other hydrogen bonds with each other forming a 2D system normal to the long b-axis of the unit cell.  相似文献   

2.
Three new complexes, namely [(nicotinic acid)2H]+I, [(2-amino-6-methylpyridine)H]+ (NO3), and the 1:1 complex between 1-isoquinoline carboxylic acid (zwitter ion form) and L-ascorbic acid were synthesized. The IR spectra revealed different types of hydrogen bonds in these compounds. The X-ray structure determination has shown the first compound to consist of a packing of [(nicotinic acid)2H]+ cations and I anions. In the dimeric cation the two nicotinic acid molecules (zwitter ions) are connected through hydrogen bonds (O–HO). Each dimer is further engaged in other hydrogen bonds with adjacent dimers giving 2D layers. The I ion is located at the inversion center. In the second compound the cation and anion are connected via hydrogen bonds formed between oxygen atoms of the NO3 anion and NH and NH2 of the cation generating a layer structure. All atoms are coplanar on mirror planes. In the 1:1 complex the two molecules are connected through hydrogen bonds formed between the two oxygen atoms of the carboxylate group of 1-isoquinoline carboxylic acid (zwitter ion) and the oxygen atoms of the two adjacent hydrogen groups of the L-ascorbic acid molecule. These complex molecules are engaged in other hydrogen bonds with each other forming a 2D system normal to the long b-axis of the unit cell.  相似文献   

3.
By using DFT calculations, the most probable structure of the p-tert-butylcalix[4]arenetetrakis(N,N-diethylacetamide) · H3O+ complex species was derived. In this complex, the hydroxonium ion H3O+ is predominantly bound by strong hydrogen bonds to three phenoxy oxygens of the ligand and partly to the remaining phenoxy oxygen atom by two somewhat weaker hydrogen bonds. Besides, the H3O+ cation is also bound to two carbonyl oxygens of the mentioned ligand by further two weaker hydrogen bonds.  相似文献   

4.
Summary. By using DFT calculations, the most probable structure of the p-tert-butylcalix[4]arenetetrakis(N,N-diethylacetamide) · H3O+ complex species was derived. In this complex, the hydroxonium ion H3O+ is predominantly bound by strong hydrogen bonds to three phenoxy oxygens of the ligand and partly to the remaining phenoxy oxygen atom by two somewhat weaker hydrogen bonds. Besides, the H3O+ cation is also bound to two carbonyl oxygens of the mentioned ligand by further two weaker hydrogen bonds.  相似文献   

5.
Neutron diffraction analysis studies reported an isolated hydronium ion (H3O+) in the interior of d ‐xylose isomerase (XI) and phycocyanobilin‐ferredoxin oxidoreductase (PcyA). H3O+ forms hydrogen bonds (H‐bonds) with two histidine side‐chains and a backbone carbonyl group in PcyA, whereas H3O+ forms H‐bonds with three acidic residues in XI. Using a quantum mechanical/molecular mechanical (QM/MM) approach, we analyzed stabilization of H3O+ by the protein environment. QM/MM calculations indicated that H3O+ was unstable in the PcyA crystal structure, releasing a proton to an H‐bond partner His88, producing H2O and protonated His88. On the other hand, H3O+ was stable in the XI crystal structure. H‐bond partners of isolated H3O+ would be practically limited to acidic residues such as aspartic and glutamic acids in the protein environment.  相似文献   

6.
Addition of water to stoichiometric 100% sulfuric acid increases the density untila maximum results near 87 mole% H2SO4. The density and conductivity maximaand viscosity minimum, the latter two near 75 mole%, are direct macroscopicresponses to microscopic quantum mechanical properties of H3O+ and of nearlysymmetric H-bond double-well potentials, as follows: (1) lack of H bonding tothe O atom of H3O+; (2) short, 2.4–2.6 A, O—O distances of nearly symmetricH bonds; and, (3) increased mobility of protons in such short H bonds, give riseto the density maximum via (1) and (2); (1) produces the viscosity minimum;and the conductivity maximum results from (2) and (3). A pronounced minimumnear 1030 cm–1 in the symmetric SO3 stretching Raman frequency of HSO4 ,observed near 45 mole% also results from double-well effects involving the shortH bonds of direct hydronium ion—bisulfate ion pair interactions. Estimates of theconcentrations of the (H3O+)(HSO4 ) and (H2SO4)(HSO4 ) pair interactions weredetermined from Raman intensity data and are given for compositions between42–100 mole%  相似文献   

7.
Ab initio calculations of the activation energy of the reaction of hydrogen exchange between the methane molecule and the H3O+ ion in the gaseous phase have been carried out by using Hartree-Fock methods and Moeller-Plesset second order perturbation theory (MP2) methods. The structure of the transition state of this reaction has been found. The interaction of the H3O+ ion with molecules of aliphatic hydrocarbons and amino acids has been studied by the Serniernpirical AMI method.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1852–1854, July, 1996.  相似文献   

8.
The structural characteristics of concentrated aqueous solutions of KI under the conditions of isobaric heating (P 20 MPa, T 298–623 K) were studied by the method of integral equations. As the temperature is increased, the continuous tetrahedral network of hydrogen bonds in the KI:15H2O solution is destroyed (at 323 K); in the KI: 8H2O solution, this network is not formed in the entire temperature range. The number of intermolecular H bonds in the systems appreciably decreases on heating. With increasing temperature, the influence exerted by the salt concentration on the intrinsic solvent structure becomes weaker. In both solutions, heating results in significant destruction of the first hydration shell of the K+ ion. At the same time, the nearest environment of the I ion becomes more structured on heating to 473–523 K. On further heating, however, the first hydration shell of the anion is destroyed. Heating exerts virtually no effect on the amount of contact ion pairs in the KI:15H2O solution but decreases the content of contact associates in the KI:8H2O solution.__________Translated from Zhurnal Obshchei Khimii, Vol. 75, No. 2, 2005, pp. 211–219.Original Russian Text Copyright © 2005 by Fedotova, Gribkov, Trostin.  相似文献   

9.
In strychninium 4‐chloro­benzoate, C21H23N2O2+·C7H4ClO2, (I), and strychninium 4‐nitro­benzoate, C21H23N2O2+·C7H4NO4, (II), the strychninium cations form pillars stabilized by C—H⋯O and C—H⋯π hydrogen bonds. Channels between the pillars are occupied by anions linked to one another by C—H⋯π hydrogen bonds. The cations and anions are linked by ionic N—H+⋯O and C—H⋯X hydrogen bonds, where X = O, π and Cl in (I), and O and π in (II).  相似文献   

10.
The limiting molar conductances ° of potassium deuteroxide KOD in D2O and potassium hydroxide KOH in H2O were determined at 5 and 45°C as a function of pressure to clarify the difference in the temperature, pressure and isotope effects on the proton jump between an OD (OH) and a D3O+ (H3O+) ion. The excess conductances of the OD ion in D2O and the OH ion in H2O, E 0 (OD-) and E 0 (OH-), increase with increasing temperature and pressure as in the case of the excess deuteron and proton conductances, E 0 (D+) and E 0 (H+). However, the temperature effect on the excess conductance is larger for the OD(OH) ion than for the D3O+ (H3O+) ion but the pressure effect is much smaller for the OD (OH) ion than for the D3O+ (H3O+) ion. These findings are correlated with larger activation energies and less negative activation volumes found for the OD (OH) ion than for the D3O+ (H3O+) ion. Concerning the isotope effect, the value of E 0 (OH-)/ E 0 (OD-) deviates considerably from at each temperature and pressure in contrast with that of E 0 (H+)/ E 0 (D+), although both of them decrease with increasing temperature and pressure. These results are discussed mainly in terms of the difference in repulsive force between the OD (OH) or the D3O+ (H3O+) ion and the adjacent water molecule, the difference in strength of hydrogen bonds in D2O and H2O, and their variations with temperature, pressure, and isotope.  相似文献   

11.
In the title compound, NH4+·C10H9O3, bimolecular layers of the anions are formed between layers of the cations. There are N—H⋯O hydrogen bonds between the ammonium ion and the carboxyl­ate groups of the anions. In the crystal structure, the C=C moiety of the cinnamate ion makes an angle of 117.1 (2)° with that of the nearest neighbour, indicating that a pedal rotation is required before β‐type [2+2]‐photodimerization can take place, which is the predominant mode of the photochemistry of this compound.  相似文献   

12.
Neutron structure determinations have been made of Tutton's salts, X2[M(H2O)6] (YO4)2, where Y = Se, X = K+, M = Cu2+; Y = S, X = K+, M = Ni2+, Cu2+, Zn2+; X = Rb+, Cs+, M = Cu2+. This work has shown that there are extensive hydrogen networks with almost linear hydrogen bonds from [M(H2O)6]2+ to (YO4)2?. The (H … O) distance increases in the Cu2+ series for X = K+ to Cs+ but there is no difference for the potassium copper salts when Y = Se or S. Three different distorted [M(H2O)6]2+ octahedra were found in the series (orthorhombic, tetragonal with two long and four short, or four long and two short bonds). The interatomic distances from X+ to the neighboring O in a distorted XO8+ dodecahedron increases with increased cation size, implying that the X+ polyhedron is maintaining its shape.  相似文献   

13.
The reaction dynamics of ground state boron atoms, B(2Pj), with acetylene, was reinvestigated and combined with novel electronic structure calculations. Our study suggests that the boron atom adds to the carbon–carbon triple bond of the acetylene molecule to yield initially a cyclic intermediate undergoing two successive hydrogen atom migrations to form ultimately an intermediate i3. The latter was found to decompose predominantly to the c-BC2H(X2A′) isomer plus atomic hydrogen via a tight exit transition state. To a minor amount, an isomerization of i3i4 prior to a hydrogen atom ejection forming the linear structure, HBCC(X1Σ+), has to be taken into account. Since the c-BC2H(X2A′) and HBCC(X1Σ+) isomers are separated by an isomerization barrier to ring closure of only 3 kJ mol−1, internally excited HBCC(X1Σ+) products can isomerize to the c-BC2H(X2A′) structure and vice versa.  相似文献   

14.
The structure of title compound, C6H16N+·C14H8N3O7S, comprises discrete ions which are inter­connected by N—H⋯O and N—H+⋯O hydrogen bonds, leading to a neutral one‐dimensional network along [100]. These hydrogen bonds appear to complement the Coulombic inter­action and help to stabilize the structure further.  相似文献   

15.
A comparison of proton exchange reactions between OH, SH, and CH acids and the NH groups of trialkylammonium ions showed that regardless of the nature of the acid XH, the mechanism of exchange includes transfer of a proton in the ion pair N-H+ ... X as the slow step. At the fast steps of proton exchange XH- N+H, i.e., molecular exchange with breaking of a hydrogen bond X-H ... N and transfer of a proton along these bonds, differences appear in the properties of XH acids. In the sequence from OH to SH and CH acids, the hydrogen bonds X-H ... N are weakened. As a result of this, in the same sequence the kinetic acidity (k2) decreases but the rate of molecular exchange (kH) increases. The ratio between the values of k2 and kH is inverted when the strong bonds O-H ... N (k2/kH 1) are replaced by weak bonds C-H ... N (k2/kH 1). It was also established that the kinetic stability of the anions increases as the oxygen atoms are replaced by sulfur in the series RCOO < RCOS < R2PSS as a result of the more effective delocalization of the negative charge on the diffuse orbitals of sulfur.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 23, No. 4, pp. 471–475, July–August 1987.  相似文献   

16.
Single crystals of the Rb4H2I2O10· 4H2O were synthesized for the first time and studied by X-ray diffraction analysis. The crystals are monoclinic, a = 7.321(6) Å, b = 12.599(8) Å, c = 8.198(8) Å, = 96.30(7)°, Z = 2, space group P21/c. The H2I2O10 4– anion is formed by the edge-sharing IO6 octahedra. The anions are united by hydrogen bonds into a chain running along the x axis. The chains are combined by water molecules into a three-dimensional structure through hydrogen bonds. The compound is a proton conductor. The conductivity values measured at 20–60°C vary within 10–6 to 10–4 ohm–1 cm–1.  相似文献   

17.
Conclusion Analysis of these experimental facts leads to the conclusion that in water and aqueous solutions of alkali metal hydroxides it is extremely probable that the hydroxide ion exists in the form H3O2 . The marked displacement of the extrapolated chemical shift of the proton of the H3O2 ion towards weak fields and the displacement of the frequency of the bending vibrations of the OH bond towards higher frequencies for hydroxide solutions indicate strong hydrogen bonding between the OH ion and the H2O molecule. The comparatively low heat of hydration of the OH ion (111 cal/mole) compared with the heat of hydration of the H+ ion (276 cal/mole) cannot, as has been shown, serve as proof that there is no strong electrostatic bond between the OH ion and a water molecule. All the heat of hydration is used up in the formation of this bond; this can be regarded as additional confirmation of the hydrophobic nature of the ion produced. The experimental data on the absolute value of the chemical shift of the proton of the H3O2 ion indicate the important role played by the excited state of the proton in this complex. This conclusion agrees with the spectroscopic data.M. V. Lomonosov Moscow State University. Translated from Zhurnal Strukturnoi Khimii, Vol. 12, No. 6, pp. 969–974, November–December, 1971.  相似文献   

18.
Structural models for stabilized O in -irradiated alkaline ices are evaluated. INDO calculations on hydrated O indicate octahedral coordination and hydrogen bond orientations for the water molecules are preferred. INDO results for hydrated OH are compared with crystallographic data for NaOH hydrates: a scaling factor for calculated hydrogen bond lengths is developed and applied to hydrogen bonded O models. The hydrated O model is closely similar to the hydrated anions in KF · 4H2O, NaOH · 4H2O, and NaOH · 7H2O. A second model is developed, involving H3O+ along with H2O, in the O stabilization shell. Both models are discussed in terms of alkaline ice radiation chemistry.  相似文献   

19.
Crystals of [H5O2][Ru(CO)3Cl3] · SbCl3 are triclinic, space group P1 , with unit cell of dimensions: a = 7.129(2), b = 10.129(3), c = 10.997(3) Å, α = 75.40(2)°, β = 97.17(2)°; γ = 120.94(2)°. The structure was solved from X-ray diffractometer data by Patterson and Fourier synthesis and refined by full matrix least-squares method to R = 3.02% for 3268 independent reflections. The [Ru(CO)3Cl3]? anion has an approximately octahedral fac configuration. The antimony atom has three chlorine neighbours at 2.387(2), 2.364(2) and 2.368(2) Å giving the expected angular conformation and three other neighbours at longer distances completing with the lone pair a monocaped octahedral environment around antimony. The acidic hydrogen has been transfered to two water molecules giving an asymmetric [H5O2]+ ion with a very short hydrogen bond of 2.373(9) Å.  相似文献   

20.
Using DFT calculations, two of the most probable structures (A, B) of the tetraphenyl p-tert-butylcalix[4]arene tetraketone·H3O+ cationic complex species were derived. The hydroxonium ion H3O+, placed in the coordination cavity formed by the calix[4]arene lower-rim groups, is bound by strong hydrogen bonds to the phenoxy oxygen atoms of the calix[4]arene ligand (structures A, B) and also to one carbonyl oxygen (structure B).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号