首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
杜娟  季振国 《物理学报》2007,56(4):2388-2392
采用密度泛函理论研究了Ⅲ族元素掺杂对SnO2电子结构及电学性能的影响.态密度分析结果表明,以替代位存在的Ⅲ族杂质均使SnO2的费米能级明显向低能态方向移动,使得价带顶不完全填满,因此在SnO2中均充当受主作用.部分态密度分析结果表明,相对于掺Al的SnO2,Ⅲ族元素中的Ga及In对费米能级附近态密度贡献较大,其主要贡献来自Ga3d态或In4d态,这预示着在SnO2中掺Ga或In能实现更好的p型掺杂效果.电离能计算结果进一步表明,在Al,Ga及In三种元素中,替位In有最小的电离能(0.06 eV),这说明其在SnO2中能形成最浅的受主能级,因而在同等掺杂情况下,可引入最高浓度的空穴,从而实现最佳的p型掺杂效果. 关键词: 密度泛函理论 2')" href="#">SnO2 Ⅲ族元素掺杂 电子结构  相似文献   

2.
F掺杂SnO2电子结构的模拟计算   总被引:4,自引:0,他引:4       下载免费PDF全文
采用基于密度泛函理论的平面波赝势方法对SnO2:F体系的电子结构进行了第一性原理模拟计算.用广义梯度近似方法优化SnO2:F体系的晶胞结构,计算了体系基态总能.通过确定F掺杂对O的优先替代位置,计算了SnO2:F的能带结构、态密度、分波态密度.分析了F掺杂对SnO2晶体的电子结构和晶体性质及光学吸收边的影响,从理论上得出光学吸收边发生蓝移.对不同掺杂量的体系电子结构进行了分析.  相似文献   

3.
采用基于密度泛函理论(DFT)的第一性原理方法对纯CaF2晶体和Mg、Sr掺杂CaF2体系的晶体结构、电学以及光学性质进行了详细的对比研究, 结果表明: 与纯CaF2晶体相比, 掺杂体系的带隙变窄且形成新的态密度峰, 费米面附近出现F与Mg、Sr原子间轨道杂化加强现象. 另外, 掺杂体系仅表现出介电性质, 其对紫外光的吸收强度大大减弱, 而Ca7SrF16掺杂体系在25.44 eV处产生新的小吸收峰. CaF2晶体掺入Mg、Sr原子后, 体系在紫外光区的消光系数减小且对紫外光的透过率增大. 此外, 掺杂体系的反射谱峰和损失函数峰均发生红移且峰值显著降低.  相似文献   

4.
采用基于密度泛函理论(DFT)的第一性原理方法对纯CaF2晶体和Mg、Sr掺杂CaF2体系的晶体结构、电学以及光学性质进行了详细的对比研究, 结果表明: 与纯CaF2晶体相比, 掺杂体系的带隙变窄且形成新的态密度峰, 费米面附近出现F与Mg、Sr原子间轨道杂化加强现象. 另外, 掺杂体系仅表现出介电性质, 其对紫外光的吸收强度大大减弱, 而Ca7SrF16掺杂体系在25.44 eV处产生新的小吸收峰. CaF2晶体掺入Mg、Sr原子后, 体系在紫外光区的消光系数减小且对紫外光的透过率增大. 此外, 掺杂体系的反射谱峰和损失函数峰均发生红移且峰值显著降低.  相似文献   

5.
采用第一性原理平面波超软赝势,计算了纤锌矿ZnO和不同掺杂量下In掺杂ZnO晶体的能带结构、态密度和分波态密度.计算表明,In的掺杂导致ZnO禁带宽度变窄.随着掺杂量的增大,InxZn1-xO的导带底和价带顶同时下降,但是导带底比价带顶下降得多,这导致了带隙的变窄.此外,In掺杂使晶胞晶格常数增大,这对带隙的变窄也有一定作用.  相似文献   

6.
Cd掺杂纤锌矿ZnO电子结构的第一性原理研究   总被引:6,自引:0,他引:6       下载免费PDF全文
采用密度泛函理论结合投影缀加波方法,对掺杂Cd导致ZnO禁带宽度下降的机理进行了研究. 通过对掺杂前后电子能带结构,态密度以及分态密度的计算和比较,发现CdxZn1-xO价带顶端(VBM)始终由O-2p占据;而导带顶端(CBM)则由Cd-5s与Zn-4s杂化轨道控制. 随着掺杂浓度的增加,决定带隙宽度的CBM的位置下降,同时VBM的位置上升,从而导致了带隙的变窄,出现了红移现象. 此外,Cd掺杂会使晶胞发生膨胀,这种张应变也是导致Cd 关键词: 密度泛函理论 电子结构 Cd掺杂ZnO  相似文献   

7.
采用密度泛函理论结合投影缀加波方法,对掺杂Cd导致ZnO禁带宽度下降的机理进行了研究. 通过对掺杂前后电子能带结构,态密度以及分态密度的计算和比较,发现CdxZn1-xO价带顶端(VBM)始终由O-2p占据;而导带顶端(CBM)则由Cd-5s与Zn-4s杂化轨道控制. 随着掺杂浓度的增加,决定带隙宽度的CBM的位置下降,同时VBM的位置上升,从而导致了带隙的变窄,出现了红移现象. 此外,Cd掺杂会使晶胞发生膨胀,这种张应变也是导致Cd  相似文献   

8.
Be掺杂纤锌矿ZnO电子结构的第一性原理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
唐鑫  吕海峰  马春雨  赵纪军  张庆瑜 《物理学报》2008,57(12):7806-7813
采用密度泛函理论结合投影缀加波方法,对Be掺杂导致ZnO禁带宽度增加的机理进行了研究.通过对掺杂前后电子能带结构、总态密度以及分态密度的计算和比较,发现导带底(CBM)是由Be 2s电子与Zn 4s电子共同控制;而BexZn1-xO价带顶 (VBM)始终由O 2p电子占据.随着掺杂量的增加,决定带隙宽度的CBM的位置上升,同时VBM的位置下降,从而导致了带隙的变宽,出现了蓝移现象.此外,Be掺杂会使晶胞发生压缩,这种压应变也是导致Be 关键词: 密度泛函理论 电子结构 Be掺杂ZnO  相似文献   

9.
党随虎  李春霞  韩培德 《物理学报》2009,58(6):4137-4143
采用基于密度泛函理论(DFT)的第一性原理的平面波超软赝势方法,对闪锌矿结构CdS晶体及CdS:MM=Mg, Cu)的几何结构、能带结构、电子态密度、集聚数和电荷密度分布进行了研究.对掺杂后体系的几何结构进行了优化计算,发现Mg和Cu原子掺入CdS后晶格常量均减少,晶格发生畸变.在此基础上研究了掺杂对体系电子结构的影响.结果表明,Mg,Cu掺入CdS都能提供较多空穴态,形成p型电导,并且Cu较Mg是更好的p型掺杂剂. 关键词: 密度泛函理论 电子结构 p型掺杂  相似文献   

10.
李春霞  党随虎 《物理学报》2012,61(1):17202-017202
运用密度泛函平面波赝势方法和广义梯度近似, 对替代式掺杂Ag和Zn的闪锌矿CdS的超晶胞晶体结构、电子结构和光学性质进行了计算, 分析了其电子态分布与结构的关系,给出了掺杂前后CdS体系的介电函数和复折射率函数. 研究表明,掺有Ag的CdS晶体空穴浓度增大,会明显提高材料的电导率, 而Zn掺杂不改变CdS晶体载流子浓度; Ag, Zn掺杂体系光学带隙均变窄; 通过分析掺杂前后CdS晶体的介电函数和复折射率函数,解释了体系的发光机理. 关键词: 密度泛函理论 Ag,Zn掺杂CdS 电子结构 光学性质  相似文献   

11.
本文利用第一性原理结合半经典玻尔兹曼理论研究了Sn掺杂对In_2O_3热电特性的影响.由于一个In_2O_3原胞有80个原子,所以为了清楚表明Sn的掺杂浓度,我们将化学式表述为In_(32-x)Sn_xO_(48).形成能的计算表明Sn比较容易取代In位,且Inb位比Ind位更容易被取代.且只有x=1,形成能是负值,而x=2和3的形成能是正值.电子结构的计算表明Sn掺杂对In_2O_3的能带结构的形状影响很小,只是费米能级向导带方向移动了,基于这一点我们预测刚性带模拟In_2O_3的电子热电特性和实际Sn掺杂的应该比较接近.输运性质的计算表明在价带顶或导带底附近,电子输运性质随化学势发生明显的变化,而在价带以上导带以下的一定化学势范围内,虽然S,σ/τ和n随化学势和温度变化比较大,ZeT随化学势和温度几乎没有变化,且n型和p型掺杂下的ZeT非常接近,大小在1附近.令人兴奋的是,通过将刚性带模型计算In_2O_3电子输运性质和实验结果对比,发现当温度为1000 K,化学势为0.6512 Ry时的实验ZT=0.28和理论0.273非常接近.而此化学势远在导带底以上,说明如果选择较低的掺杂浓度,In_2O_3的输运性质有望进一步提高.  相似文献   

12.
Zn,Cd掺杂AlN电子结构的第一性原理计算   总被引:1,自引:0,他引:1       下载免费PDF全文
基于密度泛函理论(DFT)框架下的第一性原理的平面波超软赝势方法(USPP),对Zn,Cd掺杂AlN的32原子超原胞体系进行了几何结构优化,从理论上给出了掺杂和非掺杂体系的晶体结构参数。计算了掺杂AlN晶体的结合能、电子态密度、差分电荷密度,并对计算结果进行了细致的分析。计算结果表明,Cd、Zn都可以提供很多的空穴态,是良好的p型掺杂剂,但是相对于Cd, Zn原子在AlN晶体中的溶解度更大,并且可以提供更多的空穴,有利于形成更好的p型电导。  相似文献   

13.
程亮  甘章华  刘威  赵兴中 《物理学报》2012,61(23):433-438
二氧化钛(TiO2)作为一种性能优良的光催化剂已经受到越来越多的关注.本研究采用密度泛函理论的第一性原理和广义梯度近似+U方法,对锐钛矿结构TiO2晶体三种可能的(Nb,N)共掺杂TiO2的几何结构、形成能、能带结构、电子密度和光吸收系数进行了研究,并与单掺杂(Nb/N)体系进行了对比.对掺杂后体系的几何结构进行的计算表明杂质原子掺入后晶格发生了不同程度的畸变.此外,(Nb,N)共掺杂体系与纯TiO2相比,其禁带宽度和吸收边较小.同时,与N掺杂TiO2相比,N的2p态在共掺杂情形下变为完全占据,从而减少了电子空穴对的复合.而且共掺杂体系的形成能比N单掺杂体系低,因而更加稳定.因此,(Nb,N)共掺杂可以很好地提升锐钛矿型TiO2在可见光波段的光催化性能.  相似文献   

14.
基于自旋密度泛函理论框架下的广义梯度近似平面波模守恒赝势方法,确定了准确计算Zn_(16)O_(16)超晶胞各原子对应的U值;通过计算形成能和化学键的布局分析了掺杂结构的稳定性;通过原子电荷布局和自旋电子态密度的计算分析了掺杂结构的能带结构和磁性状态;讨论了各稀土原子掺杂对ZnO吸收光谱的影响.结果表明:稀土元素的引入使晶格膨胀,Zn-O键最长键增大而最小键减小,导致氧四面体畸变;Y/La/Ce掺杂的ZnO具有亚铁磁性,Th掺杂ZnO则呈弱铁磁性,Ac掺杂ZnO为顺磁体;稀土元素使ZnO的价带和导带下移,费米能级进入导带,增强了体系的电导率;Y/La/Ac掺杂对ZnO带隙宽度的影响较小,吸收光谱略微蓝移,而Ce/Th掺杂则有效提升了ZnO对可见光的吸收.  相似文献   

15.
基于密度泛函理论(DFT)的第一性原理研究了Fe,Ni单掺杂和(Fe,Ni)共掺杂CdS的能带结构、电子态密度分布、介电常数和光学吸收系数,分析了掺杂后电子结构和光学性质的变化.计算结果表明:掺杂体系的CdS晶格常量均减少,能带宽度减小,介电函数虚部ε2(ω)都在0.53 eV左右出现了一个新峰,吸收光谱发生明显的红移,它们均在1.35 eV处出现较强吸收峰.  相似文献   

16.
王斌  刘颖  叶金文 《计算物理》2016,(6):726-736
用第一性原理计算( Mo,Fe,Mn)3 B2的结构稳定性、磁性、电子结构和弹性。过程中采用了密度泛函理论和超软赝势。研究表明反铁磁性具有最低的能量,为基态。计算所得的( Mo,Mn,Fe) B2电子态密度和布局数与Mo2 FeB2的类似。从电子态密度和重叠布局数发现,B?B和B?Mo为共价键,对剪切模量起促进作用。通过磁性分析,发现Fe和Mn原子起主要作用。然而,Mn的掺杂对硬质相Mo2 FeB2的成键和弹性的影响微小。  相似文献   

17.
Al和N共掺p型Zn1-xMgxO电子结构的第一性原理计算   总被引:1,自引:0,他引:1       下载免费PDF全文
采用密度泛函理论下的第一性原理平面波超软赝势方法,对Zn1-xMgxO超晶胞和掺杂Al,N后的Zn1-xMgxO超晶胞分别进行了优化计算.结合广义梯度近似计算了Al和N共掺杂后Zn1-xMgxO的能带结构、电子态密度和Mulliken电荷布居分布.计算表明:掺入N原子的2p态电子为Zn1-xMgxO价带顶提供空穴载流子,使Zn1-xMgxO价带顶向高能方向移动;掺入Al原子的3p态电子则与N原子的2p态电子在费米能级附近发生轨道杂化,使费米能级处价带能级展宽,Al和N共掺杂可获得p型Zn1-xMgxO.  相似文献   

18.
Bn-1Li(n=2~13)掺杂团簇的几何结构和电子性质   总被引:2,自引:1,他引:1  
采用密度泛函理论(DFT)中的B3LYP方法得到了Bn-1Li (n=2~13)小团簇的平衡几何结构.计算并分析了基态掺杂团簇的平均结合能、能量二阶差分、能级间隙、电离势、振动光谱和极化率.结果表明Li原子总是处于主团簇的外围并且以配位数最少的方式与主团簇结合,有的甚至是吸附在主团簇上面.随着锂原子所占百分比的降低,掺杂团簇的稳定性迅速提高.高浓度的掺杂(Li,B比为1∶1或1∶2)可以大幅度提高团簇的化学活性和金属性,但同时会降低其稳定性.B3Li和B5Li是幻数团簇.  相似文献   

19.
采用密度泛函理论(DFT)中的B3LYP方法得到了Bn-1Li (n=2~13)小团簇的平衡几何结构. 计算并分析了基态掺杂团簇的平均结合能、能量二阶差分、能级间隙、电离势、振动光谱和极化率. 结果表明:Li原子总是处于主团簇的外围以配位数最少的方式与主团簇结合,有的甚至是吸附在主团簇上面. 随着锂原子所占百分比的降低,掺杂团簇的稳定性迅速提高. 高浓度的掺杂(Li, B比为1:1或1:2)可以大幅度提高团簇的化学活性和金属性,但同时会降低其稳定性. B3Li和B5Li是幻数团簇.  相似文献   

20.
基于第一性原理方法研究了Mn,N单掺SnO2及Mn-N共掺SnO2的能带结构以及态密度。研究结果表明:单掺和共掺均能使带隙值降低,态密度能量向低能级方向移动,费米能级附近出现杂质能级,材料导电性增强。Mn-N共掺SnO2材料与Mn单掺相比价带顶和导带顶能级出现分离,带隙中出现的杂质能级更多,Mn的分波态密度更加弥散, Mn-N共掺使Mn的掺入更加容易。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号