首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The macrocyclic host cucurbit[7]uril forms very stable complexes with the diprotonated (K(CB[7])(1) = 1.8 x 10(8) dm(3) mol(-1)), monoprotonated (K(CB[7])(2) = 1.0 x 10(7) dm(3) mol(-1)), and neutral (K(CB[7])(3) = 1.2 x 10(3) dm(3) mol(-1)) forms of the histamine H(2)-receptor antagonist ranitidine in aqueous solution. The complexation behaviour was investigated using (1)H NMR and UV-visible spectroscopy as a function of pH and the pK(a) values of the guest were observed to increase (DeltapK(a1) = 1.5 and DeltapK(a2) = 1.6) upon host-guest complex formation. The energy-minimized structures of the host-guest complexes with the cationic guests were determined and provide agreement with the NMR results indicating the location of the CB[7] over the central portion of the guest. The inclusion of the monoprotonated form of ranitidine slows the normally rapid (E)-(Z) exchange process and generates a preference for the (Z) isomer. The formation of the CB[7] host-guest complex greatly increases the thermal stability of ranitidine in acidic aqueous solution at 50 degrees C, but has no effect on its photochemical reactivity.  相似文献   

2.
The stability of the 4,4′-bis(dimethylamino)diphenylmethane carbocation is significantly enhanced in aqueous solution by its inclusion in the cucurbit[7]uril host cavity. The formation of the host-guest complex (KCB[7] = 2.0 × 104 M−1) shifts the carbinol-carbocation equilibrium, maximizing the formation of the intensely blue carbocation to 90% at pH 5.2.  相似文献   

3.
The host-guest complex between cucurbit[7]uril and 4-nitro-benzendiazonium is decomposed into a nitrobenzene/4-nitrophenol mixture in a high total yield in the presence of CuCl.  相似文献   

4.
The 1:1 and 2:1 host–guest complexation of a series of 1,n-bis(isoquinolinium)alkane dications (Iq(CH2)nIq2+, n = 2, 4, 5, 6, 8, 9, 10 and 12, and Iq(p-xylene)Iq2+) by cucurbit[7]uril (CB[7]) in aqueous solution has been investigated by 1H NMR spectroscopy and ESI mass spectrometry. The site of binding of the first CB[7] is dependent on the nature of the central linker group, with encapsulation of the p-xylene group or the polymethylene chain when n = 6–10.With shorter (n = 2–5) or longer (n = 12) chains, the first CB[7] binds over an isoquinolinium group. With a second CB[7], the binding of the central group is abandoned in favour of the CB[7] hosts encapsulating the two cationic isoquinolinium termini. The 1:1 and 2:1 host–guest stability constants are related to modes of binding and the nature of the central linkers, and are compared with dicationic guests bearing different terminal groups.  相似文献   

5.
The 2:1 guest-host complex of 2-aminopyridine hydrochloride with cucurbit[7]uril (CB[7]) undergoes a stereoselective [4+4] photodimerization reaction in aqueous solution to yield exclusively the anti-trans isomer of 4,8-diamino-3,7-diazatricyclo[4.2.2.2(2,5)]dodeca-3,7,9,11-tetraene, and in the absence of CB[7], the photochemical reaction produces the anti-trans and syn-trans photodimers in a 4:1 ratio. In addition, encapsulation of the photodimer product in the CB[7] cavity stabilizes it with respect to the otherwise observed rearomatization to the 2-aminopyridine monomer at room temperature.  相似文献   

6.
The blue fluorescence of acridizinium bromide (ADZ+) and the green fluorescence of 9-aminoacridizinium bromide (AADZ+) in aqueous solutions can be almost entirely switched off upon the double inclusion of these guests in the cavity of cucurbit[8]uril (CB[8]) owing to the formation of a nonfluorescent, noncovalent dimer complex, and then fluorescence can be effectively restored by adding cucurbit[7]uril (CB[7]) to the complex because it competitively extracts the fluorophores out of the CB[8] cavity.  相似文献   

7.
Cucurbit[10]uril     
Melamine diamine 1 is able to displace CB[5] from the CB[10].CB[5] complex resulting in CB[10].12 and precipitated CB[5].1. We were able to isolate free CB[10] by treatment of CB[10].1 with acetic anhydride followed by washing with MeOH, DMSO, and water. The spacious cavity of CB[10] is able to complex large guests, including a cationic calix[4]arene derivative in its 1,3-alternate form (CB[10].1,3-alt-3). The addition of adamantane carboxylic acid (4) to CB[10].3 triggers a conformational change during the formation of termolecular complex CB[10].cone-3.4.  相似文献   

8.
Light relief! Mesoporous silica materials equipped with photoresponsive cucurbit[7]uril-pseudorotaxane nanovalves operate in biological media to trap cargo molecules within nanopores, but undergo controlled release when irradiated with light of a suitable wavelength (see figure). Significantly, a "ladder"-release pattern is obtained to balance maximal therapeutic efficacy and minimal dose frequency in the development of "pulsed" drug therapy.  相似文献   

9.
A series of bipyridinium guests have been synthesised, and their inclusion complexes with acyclic CB[n]-type receptor have been investigated by NMR, UV-Vis spectroscopy, and X-ray diffraction. Novel [3]pseudorotaxane was formed by C-H O, π-π and ion–dipole interactions. The impact of their complexation on the equilibrium between monomer and dimer of bipyridinium cation radicals has also been studied by UV-Vis-NIR and EPR spectroscopy. Upon reduction, the bipyridinium units linked by flexible pentylene chain preferred the formation of the dimer in the presence of acyclic CB[n]-type receptor, whereas those connected by rigid xylene bridge were suppressed as monomeric form due to the steric effect.  相似文献   

10.
The encapsulation of cisplatin by cucurbit[7]uril (Q[7]) and multinuclear platinum complexes linked via a 4,4'-dipyrazolylmethane (dpzm) ligand by Q[7] and cucurbit[8]uril (Q[8]) has been studied by NMR spectroscopy and molecular modelling. The NMR studies suggest that some cisplatin binds in the cucurbituril cavity, while cis-[PtCl(NH3)2(H2O)]+ only binds at the portals. Alternatively, the dpzm-linked multinuclear platinum complexes are quantitatively encapsulated within the cavities of both Q[7] and Q[8]. Upon encapsulation, the non-exchangeable proton resonances of the multinuclear platinum complexes show significant upfield shifts in 1H NMR spectra. The H3/H3* resonances shift upfield by 0.08 to 0.55 ppm, the H5/H5* shift by 0.9 to 1.6 ppm, while the methylene resonances shift by 0.74 to 0.88 ppm. The size of the resonance shift is dependent on the cavity size of the encapsulating cucurbituril, with Q[7] encapsulation producing larger shifts than Q[8]. The upfield shifts of the dpzm resonances observed upon cucurbituril encapsulation indicate that the Q[7] or Q[8] is positioned directly over the dpzm linking ligand. The terminal platinum groups of trans-[{PtCl(NH3)2}2 mu-dpzm]2+ (di-Pt) and trans-[trans-{PtCl(NH3)2}2-trans-{Pt(dpzm)2(NH3)2}]4+ (tri-Pt) provide a barrier to the on and off movement of cucurbituril, resulting in binding kinetics that are slow on the NMR timescale for the metal complex. Although the dpzm ligand has relatively few rotamers, encapsulation by the larger Q[8] resulted in a more compact di-Pt conformation with each platinum centre retracted further into each Q[8] portal. Encapsulation of the hydrolysed forms of di-Pt and tri-Pt is considerably slower than for the corresponding Cl forms, presumably due to the high-energy cost of passing the +2 platinum centres through the cucurbituril portals. The results of this study suggest that cucurbiturils could be suitable hosts for the pharmacological delivery of multinuclear platinum complexes.  相似文献   

11.
12.
Ramalingam V  Urbach AR 《Organic letters》2011,13(18):4898-4901
The synthesis of [2]rotaxanes, each comprising a viologen core threaded through a cucurbit[8]uril (Q8, Figure 1) macrocycle and stoppered by tetraphenylmethane groups, and their binding to second guests as inclusion complexes in organic and aqueous media are described. Stoppering was observed to have little effect on binding. Chemical modification of the threaded guest was used to control solubility and binding characteristics, thus demonstrating a novel approach to making artificial receptors with readily modifiable properties.  相似文献   

13.
14.
[structure: see text] Cucurbits come in a variety of sizes, shapes, and colors. We present a building block approach that allows the tailor-made synthesis of CB[5], CB[6], and CB[7] analogues whose sizes, shapes, and colors differ from those of the known CB[n].  相似文献   

15.
A dicationic ferrocene derivative has previously been shown to bind cucurbit[7]uril (CB[7]) in water with ultrahigh affinity (ΔG(o) = -21 kcal/mol). Here, we describe new compounds that bind aqueous CB[7] equally well, validating our prior suggestion that they, too, would be ultrahigh affinity CB[7] guests. The present guests, which are based upon either a bicyclo[2.2.2]octane or adamantane core, have no metal atoms, so these results also confirm that the remarkably high affinities of the ferrocene-based guest need not be attributed to metal-specific interactions. Because we used the M2 method to compute the affinities of several of the new host-guest systems prior to synthesizing them, the present results also provide for the first blinded evaluation of this computational method. The blinded calculations agree reasonably well with experiment and successfully reproduce the observation that the new adamantane-based guests achieve extremely high affinities, despite the fact that they position a cationic substituent at only one electronegative portal of the CB[7] host. However, there are also significant deviations from experiment, and these lead to the correction of a procedural error and an instructive evaluation of the sensitivity of the calculations to physically reasonable variations in molecular energy parameters. The new experimental and computational results presented here bear on the physical mechanisms of molecular recognition, the accuracy of the M2 method, and the usefulness of host-guest systems as test-beds for computational methods.  相似文献   

16.
Lei W  Zhou Q  Jiang G  Hou Y  Zhang B  Cheng X  Wang X 《Chemphyschem》2011,12(16):2933-2940
To track nuclear dynamic processes by fluorescence imaging, nuclear stains should be highly fluorescent, resistant to photobleaching, and inert to nuclear processes. The nuclear stains of the Hoechst family, such as Hoechst 34580, show bright fluorescence only on groove binding to DNA, and therefore may interfere with visualization of nuclear dynamic processes induced by other stimuli. We study host-guest interactions between Hoechst 34580 and Cucurbit[7]uril (CB7) in aqueous solutions. The formation of CB7-Hoechst 34580 inclusion complexes with stoichiometry of 2:1 in water and 1:1 in phosphate-buffered saline (PBS) solution (pH 7.0) is confirmed by (1)H NMR, absorption spectra, fluorescence spectra, MALDI-TOF MS, and molecular modeling. Compared to Hoechst 34580, the inclusion complex exhibits redshifted absorption, intensified fluorescence, improved photostability, weakened DNA binding affinity, comparable ability to penetrate cell nuclei, and better nuclear-staining capability, and thus a new avenue for the application of cucurbituril in fluorescence imaging is opened.  相似文献   

17.
Interactions of cucurbit[7]uril (Q[7] host) with guest adenine (g1), adenosine (g2) and 2′,3′-o-isopropylideneadenosine (g3) were studied in details by 1H NMR, UV absorption spectroscopy, fluorescence spectroscopy and high performance liquid chromatography (HPLC) methods. We found that the suitable pH range for interaction was between 1 and 7, and the optimal pH range was between 2 and 4. The 1H NMR analysis indicated that Q[7] selectively interacted with the adenine moiety of the guests g1 and g2, while Q[7] selectively interacted with the D-ribose sugar ring moiety of the guest g3. Moreover, 1H NMR spectra showed that the exchange between the bound guest and the free guest was fast on the NMR time scale for the Q[7]-g1 and Q[7]-g2 systems. However, an obvious equilibrium between the bound host/guest and the unbound host/guest were observed in the Q[7]-g3 complex. Several methods were used to determine quantitatively the stability of the three host–guest inclusion complexes formed between Q[7] and the guests. The formation constants by UV and fluorescence were 1.90 × 105 L mol? 1 and 1.34 × 105 L mol? 1 for Q[7]-g1, 9.41 × 104 L mol? 1 and 4.24 × 104 L mol? 1 for Q[7]-g2, 4.50 × 104 L mol? 1 and 3.62 × 104 L mol? 1 for Q[7]-g3, respectively. HPLC method was also introduced to explore the interactions between Q[7] and the adenine and its derivatives. The formation constants of the host–guest inclusion complexes, as determined by HPLC, were 6.76 × 104 L mol? 1 for Q[7]-g1, 1.80 × 104 L mol? 1 for Q[7]-g2, 3.01 × 104 L mol? 1 for Q[7]-g3 respectively. Our study suggested that Q[7] could be a suitable host for the delivery of bioactive molecules, such as the adenine and its derivatives.  相似文献   

18.
Two new azobenzene heptamethine cyanine conjugates exist as dispersed monomeric molecules in methanol solution and exhibit near-infrared (NIR) cyanine absorption and fluorescence. Both conjugates form non-emissive cyanine H-aggregates in water, but the addition of cucurbit[7]uril (CB7) induces dye deaggregation and a large increase in cyanine NIR fluorescence emission intensity. CB7 encapsulates the protonated azonium tautomer of the 4-(N,N-dimethylamino)azobenzene component of each azobenzene–cyanine conjugate and produces a distinctive new absorption band at 534 nm. The complex is quite hydrophilic, which suggests that CB7 can be used as a supramolecular additive to solubilize this new family of NIR azobenzene–cyanine conjugates for future biomedical applications. Since many azobenzene compounds are themselves potential drug candidates or theranostic agents, it should be possible to formulate many of them as CB7 inclusion complexes with improved solubility, stability, and pharmaceutical profile.  相似文献   

19.
The self-diffusion of cucurbit[7]uril (CB[7]) and its host-guest complexes in D2O has been examined using pulsed gradient spin-echo nuclear magnetic resonance spectroscopy. CB[7] diffuses freely at a concentration of 2 mM with a diffusion coefficient (D) of 3.07 x 10(-10) m(2) s(-1). At saturation (3.7 mM), CB[7] diffuses more slowly (D = 2.82 x 10(-10) m(2) s(-1)) indicating that it partially self-associates. At concentrations between 2 and 200 mM, CsCl has no effect on the diffusion coefficient of CB[7] (1 mM). Conversely, CB[7] (2 mM) significantly affects the diffusion of 133Cs+ (1 mM), decreasing its diffusion coefficient from 1.86 to 0.83 x 10(-9) m(2) s(-1). Similar changes in the rate of diffusion of other alkali earth metal cations are observed upon the addition of CB[7]. The diffusion coefficient of 23Na+ changes from 1.26 to 0.90 x 10(-9) m(2) s(-1) and 7Li+ changes from 3.40 to 3.07 x 10(-9) m(2) s(-1). In most cases, encapsulation of a variety of inorganic and organic guests within CB[7] decreases their rates of diffusion in D2O. For instance, the diffusion coefficient of the dinuclear platinum complex trans-[[PtCl(NH3)2}2mu-dpzm](2+) (where dpzm is 4,4'-dipyrazolylmethane) decreases from 4.88 to 2.95 x 10(-10) m(2) s(-1) upon encapsulation with an equimolar concentration of CB[7].  相似文献   

20.
Since the structure of cucurbituril(Q[6]) has been determined in 1981[1] and its homologues cucurbit [n = 5,7,8 and 10]uril(Q[5], Q[7], Q[8] and Q[10]) have been reported in 2000[2,3], 2002[4], a series of host-guest complexes[5—7], novel supramolecular as-semblies[8—10], molecular encapsulates[11,12] and mo-lecular containers[13,14] based on Q[n] have been stud-ied extensively. All cucurbituril homologues have common char-acteristic features, i.e. hydrophobic cavity, and polar carbonyl gr…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号