首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To investigate the photoreactions of BrU in Z-DNA, the photoirradiation of 5'-d(C1G2C3G4BrU5G6C7G8)-3'/5'-d(C9mG10C11A12C13mG14C15G16)-3'(ODN 1-2) was investigated. In accord with previous observations, B-form ODN 1-2 with the 5'-GBrU sequence showed very weak photoreactivity. However, Z-form ODN 1-2 in 2 M NaCl underwent photoreaction to afford 5'-d(CGC)rGd(UGCG)-3' together with the formation of imidazolone (Iz) contained 5'-d(CIzCACmGCG)-3'. The results clearly indicate that structural changes caused by the B-Z transition dramatically increased the photoreactivity of ODN 1-2. Inspection of the molecular structure of Z-DNA suggests that there is unique four-base pi-stacks at the G4-BrU5-C11-mG10 in ODN 1-2. These results suggest that the intriguing possibility that the mG10 in a complementary strand located at the end of the four-base pi-stacks may act as an electron donor. To test the hypothesis of interstrand charge transfer from mG10 to BrU5 within the four-base pi-stacks in Z-DNA, ODN 1-3 samples in which the putative donor G10 residue was replaced with 8-methoxyguanine (moG) were prepared, since moG is known to trap cation radicals to yield Iz moieties in DNA. Photoirradiation of ODN 1-3 efficiently produced 5'-d(CGC)rGd(UGCG)-3' together with formation of 5'-d(CIzCACmGCG)-3'. These results clearly indicate that the interstrand charge transfer from mG10 to BrU5 initiates the photoreaction. In clear contrast, other replacements of G with moG did not enhance the photoreactivity. The present study revealed the presence of unique four-base pi-stacks in Z-DNA and photoirradition of BrU in Z-DNA causes efficient electron transfer from G within this cluster.  相似文献   

2.
Dai Q  He C 《Organic letters》2011,13(13):3446-3449
To investigate the potential oxidation products of 5-hydroxymethylcytosine (5-hmC)-containing DNA, we present here efficient syntheses of 5-formyl- and 5-methoxycarbonyl-2'-deoxycytidine phosphoramidites. The 5-formyl group in III was easy to introduce and was compatible with phosphoramidite and DNA syntheses. An additional treatment of ODN1 with NaBH(4) produced the corresponding ODN2 quantitatively. Phosphoramidite V was also incorporated into DNA, and the methyl ester could be hydrolyzed under mild basic conditions to afford ODN3.  相似文献   

3.
To explore the structure-dependent hydrogen abstraction in antiparallel and parallel G-quartet DNA structures, the photochemical reactivity of 5-iodouracil ((I)U)-containing human telomeric DNA 22-mers was investigated under the 302 nm UV irradiation conditions. We discovered that only antiparallel ODN 4, in which the second T residue in the diagonal loop of the antiparallel G-quartet is substituted with (I)U, was rapidly consumed as compared with parallel ODN 4 and the other (I)U-containing 22-mers under the irradiation conditions. Product analysis of the photolyzate of antiparallel ODN 4 indicated that a 2'-deoxyribonolactone residue was effectively produced at the 5' side of the (I)U residue in the diagonal loop. Photochemical 2'-deoxyribonolactone formation was also found in the (I)U-containing diagonal loop of antiparallel G-quartets d(GGGGTTT(I)UGGGG)(2) and d(GGGGTT(I)UTGGGG)(2), whereas the reaction did not occur at other DNA structures, including the single-stranded form, the loop region of the hairpin, and linear four-stranded G-quartets. The results clearly indicate that this type of 2'-deoxyribonolactone formation efficiently occurrs only in the diagonal loop of the antiparallel G-quartet. Furthermore, we found that 2'-deoxyribonolactone was formed at the (I)U-containing G-rich sequence of the IgG switch regions and the 5' termini of the Rb gene, suggesting the formation of an antiparallel G-quartet with a diagonal loop in these sequences. These results suggest that the present photochemical method can be used as a specific probe for the antiparallel G-quartet with the diagonal loop.  相似文献   

4.
Various modified guanine derivatives were synthesized and introduced into G(4) of d(CGCGCG)(2) to evaluate their capacity to stabilize Z-form DNA. It was found that the incorporation of 8-methylguanosine (m(8)rG) in oligonucleotides stabilizes the Z form more dramatically than does the incorporation of 8-methyl-2'-deoxyguanosine (m(8)G). This enhancement is ascribed to a reduction in the entropic penalty, which arises from the introduction of hydrophilic groups in solvent-exposed regions. The incorporation of m(8)rG into DNA sequences markedly stabilizes the Z form even in the absence of NaCl. The Z-DNA stabilizer allows oligonucleotides with a wide range of sequences to be converted to the Z form. It could be a powerful tool for examining the molecular basis of many types of Z-form-specific reactions at the molecular level under physiological salt conditions.  相似文献   

5.
We report the construction of a one-pot autonomous DNA computing machine based on photochemical gate transition (photocleavage, hybridization, and photoligation), and we performed binary digit additions using this machine. In our method, both photochemical DNA manipulations previously reported, photoligation via 5-carboxyvinyldeoxyuridene (cvU) containing ODN and photocleavage via carbazole-modified ODN, were employed. The binary digit additions were autonomously carried out by one-time irradiation at 366 nm in the single test tube. The fluorescence readout by the DNA chip was in good agreement with the correct answer of binary digit additions. We believe that this system is easily applicable to correlation analysis between SNPs as well as other binary digit processing, such as subtraction.  相似文献   

6.
The X-ray crystal structure of the complex rac-[Ru(5,6-dmp)(3)]Cl(2) (5,6-dmp = 5,6-dimethyl-1,10-phenanthroline) reveals a distorted octahedral coordination geometry with the Ru-N bond distances shorter than in its phen analogue. Absorption spectral titrations with CT DNA reveal that rac-[Ru(5,6-dmp)(3)](2+) interacts (K(b), (8.0 +/- 0.2) x 10(4) M(-1)) much more strongly than its phen analogue. The emission intensity of the 5,6-dmp complex is dramatically enhanced on binding to DNA, which is higher than that of the phen analogue. Also, interestingly, time-resolved emission measurements on the DNA-bound complex shows biexponential decay of the excited states with the lifetimes of short- and long-lived components being higher than those for the phen analogue. The CD spectral studies of rac-[Ru(5,6-dmp)(3)](2+) bound to CT DNA provide a definite and elegant evidence for the enantiospecific interaction of the complex with B-form DNA. Competitive DNA binding studies using rac-[Ru(phen)(3)](2+) provide support for the strong binding of the complex with DNA. The Delta-enantiomer of rac-[Ru(5,6-dmp)(3)](2+) binds specifically to the right-handed B-form of poly d(GC)(12) at lower ionic strength (0.05 M NaCl), and the Lambda-enantiomer binds specifically to the left-handed Z-form of poly d(GC)(12) generated by treating the B-form with 5 M NaCl. The strong electronic coupling of the DNA-bound complex with the unbound complex facilitates the change in its enantiospecificity upon changing the conformation of DNA. The (1)H NMR spectra of rac-[Ru(5,6-dmp)(3)](2+) bound to poly d(GC)(12) reveal that the complex closely interacts most possibly in the major grooves of DNA. Electrochemical studies using ITO electrode show that the 5,6-dmp complex stabilizes CT DNA from electrocatalytic oxidation of its guanine base more than the phen analogue does.  相似文献   

7.
Two 17-mer oligodeoxynucleotide-5'-linked-(6,7-diphenylpterin) conjugates, 2 and 3, were prepared as photosensitisers for targeting photooxidative damage to a 34-mer DNA oligodeoxynucleotide (ODN) fragment 1 representing the chimeric bcr-abl gene that is implicated in the pathogenesis of chronic myeloid leukaemia (CML). The base sequence in the 17-mer was 3'G G T A G T T A T T C C T T C T T5'. In the first of these ODN conjugates (2) the pterin was attached at its N3 atom, via a -(CH2)3OPO(OH)- linker, to the 5'-OH group of the ODN. Conjugate 2 was prepared from 2-amino-3-(3-hydroxypropyl)-6,7-diphenyl-4(3H)-pteridinone 10, using phosphoramidite methodology. Starting material 10 was prepared from 5-amino-7-methylthiofurazano[3,4-d]pyrimidine 4 via an unusual highly resonance stabilised cation 8, incorporating the rare 2H,6H-pyrimido[6,1-b][1,3]oxazine ring system. In the characterisation of 10 two pteridine phosphazenes, 15 and 29, were obtained, as well as new products containing two uncommon tricyclic ring systems, namely pyrimido[2,1-b]pteridine (20 and 24) and pyrimido[1,2-c]pteridine (27). In the second ODN conjugate the linker was -(CH2)5CONH(CH2)6OPO(OH)- and was attached to the 2-amino group of the pterin. In the preparation of 3, the N-hydroxysuccinimide ester 37 of 2-(5-carboxypentylamino)-6,7-diphenyl-4(3H)-pteridinone was condensed with the hexylamino-modified 17-mer. Excitation of 36 with near UV light in the presence of the single-stranded target 34-mer, 5'T G A C C A T C A A T A A G14 G A A G18 A A G21 C C C T T C A G C G G C C3' 1 caused oxidative damage at guanine bases, leading to alkali-labile sites which were monitored by polyacrylamide gel electrophoresis. Cleavage was observed at all guanine sites with a marked preference for cleavage at G14. In contrast, excitation of ODN-pteridine conjugate 2 in the presence of 1 caused oxidation of the latter predominantly at G18, with a smaller extent of cleavage at G15 and G14 (in the double-stranded portion) and G21. These results contrast with our previous observation of specific cleavage at G21 with ruthenium polypyridyl sensitisers, and suggest that a different mechanism, probably one involving Type 1 photochemical electron transfer, is operative. Much lower yields were found with the ODN-pteridine conjugate 3, perhaps as a consequence of the longer linker between the ODN and the pteridine in this case.  相似文献   

8.
1-(2′-Deoxy-β-D -threo-pentofuranosyl)thymine (= 1-(2′-deoxy-β-D -xylofuranosyl)thymine; xTd; 2 ) was converted into its phosphonate 3b as well as its 2-cyanoethyl phosphoramidite 3c . Both compounds were used for solid-phase synthesis of d[(xT)12-T] ( 5 ), representing the first DNA fragment build up from 3′–5′-linked 2′-deoxy--β-D -xylonucleosides. Moreover, xTd was introduced into the innermost part of the self-complementary dodecamer d(G-T-A-G-A-A-xT-xT-C-T-A-C)2 (9). The CD spectrum of d[(xT)12–T] ( 5 ) exhibits reversed Cotton effects compared to d(T12) ( 6 ; see Fig. 1), implying a left-handed single strand. With d(A12) ( 7 ) it could be hybridized to form a propably Left-handed double strand d(A12) · d[(xT)12–T] ( 7 · 5 ) which was confirmed by melting experiments in combination with temperature-dependent CD spectroscopy. While 5 was hydrolyzed by snake-venom phosphodiesterase, it was resistant towards calf-spleen phosphodiesterase. The modified, self-complementary duplex 9 was hydrolyzed completely by snake-venom phosphodiesterase, at a twelvefold slower rate compared to unmodified 8 ; calf-spleen phosphodiesterase hydrolyzed 9 only partially.  相似文献   

9.
In this study, DNA local structures with bulged bases and mismatched base pairs as well as ordinary full‐matched base pairs by using 19F NMR spectroscopy with 19F‐labeled oligodeoxynucleotides (ODNs) were monitored. The chemical shift change in the 19F NMR spectra allowed discrimination of the DNA structures. Two types of ODNs possessing the bis(trifluoromethyl)benzene unit (F‐unit) at specified uridines were prepared and hybridized with their complementary or noncomplementary strands to form matched, mismatched, or bulged duplexes. By using ODN F1, in which an F‐unit was connected directly to a propargyl amine‐substituted uridine, three local structures, that is, full‐matched, G–U mismatch, and A‐bulge could be analyzed, whereas other structures could not be discriminated. A molecular modeling study revealed that the F‐unit in ODN F1 interacted little with the nucleobases and sugar backbone of the opposite strand because the linker length between the F‐unit and the uridine base was too short. Therefore, the capacity of ODN F1 to discriminate the DNA local structures was limited. Thus, ODN F2 was designed to improve this system; aminobenzoic acid was inserted between the F‐unit and uridine base so the F‐unit could interact more closely with the opposite strand. Eventually, the G‐bulge and T–U mismatch and the three aforementioned local structures could be discriminated by using ODN F2. In addition, the dissociation processes of these duplexes could be monitored concurrently by 19F NMR spectroscopy.  相似文献   

10.
We describe a light-controlled template-directed reversible DNA photoligation via carbazole-tethered 5-carboxyvinyluracil. Carbazole-tethered 5-carboxyvinyl-2'-deoxyuridine-containing oligodeoxynucleotide (ODN) can be ligated by irradiation at 366 nm in the presence of template ODN, and the ligated ODN can be split by irradiation at 366 nm in the absence of template ODN.  相似文献   

11.
Here, we showed that Pyrex-filtered UV light irradiation of d((Br)CA) gave rise to three types of intrastrand cross-link products, that is, d(C[5-N6]A), d(C[5-2]A), and d(C[5-8]A), where the C5 carbon atom of cytosine is covalently bonded to the N6 nitrogen atom, C2, and C8 carbon atoms of adenine, respectively. Furthermore, we demonstrated by LC-MS/MS that the UV irradiation of a 5-bromocytosine-containing duplex oligodeoxynucleotide (ODN) led to the formation of five cross-link products, that is, C[5-N6]A, C[5-2]A, C[5-8]A, A[2-5]C, and A[8-5]C, under both aerobic and anaerobic conditions. LC-MS/MS quantification results showed that the yields for the formation of these cross-link products are different. The presence of molecular oxygen reduces the yields for the formation of all cross-link products except A[2-5]C. To our knowledge, this is the first report about the formation of intrastrand cross-link products between cytosine and adenine in duplex DNA. The chemistry discovered here may facilitate the future preparations of oxidative cross-link lesion-bearing substrates for biochemical and biophysical studies.  相似文献   

12.
The photochemical reactions of 6,4,4'-trimethylangelicin (TMA) with calf thymus DNA and an octanucleotide containing a single thymine have been characterized. HPLC analyses of enzymatically hydrolyzed TMA-DNA showed that isomeric forms of 4',5'-furan-side monoadducts were the major products. To develop monoclonal antibodies Balb c mice were immunized with the TMA-DNA complexed with methylated bovine serum albumin. The resultant antibodies were characterized by enzyme-linked immunosorbent assays (ELISA). The most sensitive antibody (7E3) has high specificity for TMA-DNA, very low cross-reactivity with DNA modified with either 4',5'-dimethylangelicin or 4'-methylangelicin and no cross-reactivity with non-modified DNA or with DNA modified with either 4'-aminomethyl-4,5',8-trimethylpsoralen or 8-methoxypsoralen. To characterize further this antibody, oligonucleotides containing specific TMA photoadducts were isolated from the photoreaction mixture by polyacrylamide gel electrophoresis and used as competitive inhibitors in the ELISA. Autoradiography of the gel showed an intense band corresponding to the 4',5'-monoadduct and two weaker unidentified bands. Antibody 7E3 reacted only with the 4',5'-monoadduct band as would be expected since this photoadduct was the principal photoadduct in the original antigen.  相似文献   

13.
Abstract— The proportions of single-strand breaks and alkali-labile bonds produced by UV-light were investigated in covalently-closed circular 5-bromouracil (BrUra)-containing λ-phage DNA. When BrUra DNA was irradiated in 001 M Tris-0–001 M EDTA (pH 8-1) buffer, the D0 was 11-7 J/m2 for single-strand breaks, 2–25 J/m2 for total breaks, and 2–8 J/m2 for alkali-labile bonds. Thus, alkali-labile bonds were the predominant photochemical products. No double-strand breaks were observed after exposure to 7-7 times the D0 for neutral breakage. The photolability measured under both neutral and alkaline conditions was affected by the NaCl concentration in the irradiation solvent, with the greatest resistance to breakage exhibited at the lowest concentrations. The composition of the irradiation buffer also affected sensitivity. Exposure in 1/10 SSC yielded 4-4 (neutral) and 5–7 (alkaline) times the breakage produced in Tris-EDTA.  相似文献   

14.
采用自组装技术,将 5′端标记有巯基的 20-merODN(oligo 1)以金 硫键形式牢固结合在 7. 995MHz的AT-切石英晶体的镀金表面,然后由石英晶体微天平实时检测了与碱基序列互补的 10 merODN (oligo 2)和 8 merODN(oligo 3)的杂交,同时还研究了稀土金属铈离子在温和条件下对DNA的水解切断作用.结果表明:应用QCM方法可能实时检测DNA的固定和杂交,Ce(IV)能随机切断单链DNA;但不能切断杂交形成的双链DNA,因此可利用杂交保护的方法对单链DNA实行定位切断.  相似文献   

15.
We describe a highly efficient method for reversible photocircularization of oligonucleotide (ODN) on a double-stranded DNA template: 5-carboxyvinyl-2'-deoxyuridine-containing ODN was reversibly circularized around the target sequence of the double-stranded plasmid DNA resulting in formation of a catenated plasmid.  相似文献   

16.
Z-DNA is produced in a long genomic DNA by Z-DNA binding proteins, through formation of two B-Z junctions with the extrusion of one base pair from each junction. To answer the question of how Z-DNA binding proteins induce B-Z transitions in CG-rich segments while maintaining the B-conformation of surrounding segments, we investigated the kinetics and thermodynamics of base-pair openings of a 13-bp DNA in complex with the Z-DNA binding protein, Zα(ADAR1). We also studied perturbations in the backbone of Zα(ADAR1) upon binding to DNA. Our study demonstrates the initial contact conformation as an intermediate structure during B-Z junction formation induced by Zα(ADAR1), in which the Zα(ADAR1) protein displays unique backbone conformational changes, but the 13-bp DNA duplex maintains the B-form helix. We also found the unique structural features of the 13-bp DNA duplex in the initial contact conformation: (i) instability of the AT-rich region II and (ii) longer lifetime for the opening state of the CG-rich region I. Our findings suggest a three-step mechanism of B-Z junction formation: (i) Zα(ADAR1) specifically interacts with a CG-rich DNA segment maintaining B-form helix via a unique conformation; (ii) the neighboring AT-rich region becomes very unstable, and the CG-rich DNA segment is easily converted to Z-DNA; and (iii) the AT-rich regions are base-paired again, and the B-Z junction structure is formed.  相似文献   

17.
Photosensitized one-electron oxidation was applied to discriminate a specific base site of 5-methylcytosine (mC) generated in DNA possessing a partial sequence of naturally occurring p53 gene, using a sensitizing 2-methyl-1,4-naphthoquinone (NQ) chromophore tethered to an interior of oligodeoxynucleotide (ODN) strands. Photoirradiation and subsequent hot piperidine treatment of the duplex consisting of mC-containing DNA and NQ-tethered complementary ODN led to oxidative strand cleavage selectively at the mC site, when the NQ chromophore was arranged so as to be in close contact with the target mC. The target mC is most likely to be one-electron oxidized into the radical cation intermediate by the sensitization of NQ. The resulting mC radical cation may undergo rapid deprotonation and subsequent addition of molecular oxygen, thereby leading to its degradation followed by strand cleavage at the target mC site. In contrast to mC-containing ODN, ODN analogs with replacement of normal cytosine, thymine, adenine, or guanine at the mC site underwent less amount of such an oxidative strand cleavage at the target base site, presumably due to occurrence of charge transfer and charge recombination processes between the base radical cation and the NQ radical anion. Furthermore, well designed incorporation of the NQ chromophore into an interior of ODN could suppress a competitive strand cleavage at consecutive guanines, which occurred as a result of positive charge transfer. Thus, photosensitization by an NQ-tethered ODN led to one-electron oxidative strand cleavage exclusively at the target mC site, providing a convenient method of discriminating mC in naturally occurring DNA such as human p53 gene as a positive band on a sequencing gel.  相似文献   

18.
The complexes [Cu(phen)(3)](ClO(4))(2) 1, [Cu(5,6-dmp)(3)](ClO(4))(2) 2, [Cu(dpq)(3)](ClO(4))(2) 3, [Zn(phen)(3)](ClO(4))(2) 4, [Zn(5,6-dmp)(3)](ClO(4))(2) 5 and [Zn(dpq)(3)](ClO(4))(2) 6, where phen = 1,10-phenanthroline, 5,6-dmp = 5,6-dimethyl-1,10-phenanthroline and dpq = dipyrido[3,2-d:2',3'-f]quinoxaline, have been isolated, characterized and their interaction with calf thymus DNA studied by using a host of physical methods. The X-ray crystal structures of rac-[Cu(5,6-dmp)(3)](ClO(4))(2) and rac-[Zn(5,6-dmp)(3)](ClO(4))(2) have been determined. While 2 possesses a regular elongated octahedral coordination geometry (REO), 5 possesses a distorted octahedral geometry. Absorption spectral titrations of the Cu(II) complexes with CT DNA reveal that the red-shift (12 nm) and DNA binding affinity of 3 (K(b), 7.5 x 10(4) M(-1)) are higher than those of 1 (red-shift, 6 nm; K(b), 9.6 x 10(3) M(-1)) indicating that the partial insertion of the extended phen ring of dpq ligand in between the DNA base pairs is deeper than that of phen ring. Also, 2 with a fluxional Cu(II) geometry interacts with DNA (K(b), 3.8 x 10(4) M(-1)) more strongly than 1 suggesting that the hydrophobic forces of interaction of 5,6 methyl groups on the phen ring is more pronounced than the partial intercalation of phen ring in the latter with a static geometry. The DNA binding affinity of 1 is lower than that of its Zn(ii) analogue 4, and, interestingly, the DNA binding affinity 2 of with a fluxional geometry is higher than that of its Zn(II) analogue 5 with a spherical geometry. It is remarkable that upon binding to DNA 3 shows an increase in viscosity higher than that the intercalator EthBr does, which is consistent with the above DNA binding affinities. The CD spectra show only one induced CD band on the characteristic positive band of CT DNA upon interaction with the phen (1,4) and dpq (3,6) complexes. In contrast, the 5,6-dmp complexes 2 and 5 bound to CT DNA show exciton-coupled biphasic CD signals with 2 showing CD signals more intense than 5. The Delta-enantiomer of rac-[Cu(5,6-dmp)(3)](2+) 2 binds specifically to the right-handed B-form of CT DNA at lower ionic strength (0.05 M NaCl) while the Lambda-enantiomer binds specifically to the left-handed Z-form of CT DNA generated by treating the B-form with 5 M NaCl. The complex 2 is stabilized in the higher oxidation state of Cu(II) more than its phen analogue 1 upon binding to DNA suggesting the involvement of electrostatic forces in DNA interaction of the former. In contrast, 3 bound to DNA is stabilized as Cu(I) rather than the Cu(II) oxidation state due to partial intercalative interaction of the dpq ligand. The efficiencies of the complexes to oxidatively cleave pUC19 DNA vary in the order, 3> 1 > 2 with 3 effecting 100% cleavage even at 10 microM complex concentration. However, interestingly, this order is reversed when the DNA cleavage is performed using H(2)O(2) as an activator and the highest cleavage efficiency of 2 is ascribed to its electrostatic interaction with the exterior phosphates of DNA.  相似文献   

19.
We illustrate in this paper the successful combination of the direct and feedback mode of scanning electrochemical microscopy (SECM) for the writing of oligonucleotide patterns on thin gold films alongside the imaging of DNA hybridization. The patterning process was achieved using the direct mode of SECM, where the electrical field established between the SECM tip and the gold interface was used to drive the local deposition of micrometre sized polypyrrole spots to which a 15(mer) oligonucleotide (ODN) strand was linked covalently. Imaging of the deposited polypyrrole-ODNs was achieved by means of the feedback mode of SECM using Ru(NH(3))(6)(3+) as the mediator. The detection of the hybridization reaction of the ODN probes with their biotinylated complementary strands using SECM was possible after subsequent reactions with streptavidin and biotinylated horseradish peroxidase (HRP). The HRP-biocatalyzed oxidation of 4-chloro-1-naphthol (1) in the presence of H(2)O(2), and the precipitation of the insoluble product 4-chloro-1-naphthon (2) on the hybridized areas on the gold film caused a local alteration of conductivity. Such a change in conductivity was sensitively detected by the SECM tip and allowed imaging of DNA arrays in a fast and straightforward way.  相似文献   

20.
Bleomycin-induced oxidative DNA damage under limited oxygen conditions results in the formation of the C4'-oxidized abasic site (1). We synthesized the oligodeoxynucleotides (ODN) 5, which contains 4'-o-nitrobenzyloxythymidine (3), and 6, which contains 2-nitrobenzyloxy-4'-methoxy-2'-deoxy-d-ribofuranoside (4), as the caged precursors of 7, an ODN containing 1, to study its reactivity with amines. Photoirradiation of the single- and double-stranded 5 led to the formation of 7. Uncaging of the duplex was faster and the yield of 7 was higher with the double-stranded than with the single-stranded ODN. It was suggested that a low dielectric environment of the o-nitrobenzyloxy group in the minor groove of the duplex might accelerate the uncaging rate. Similarly, 6 and its duplex yielded 7 by photoirradiation. However, the yields of 7 were lower than those of 5, and duplex formation slowed the uncaging rate. Reaction of the obtained 7 with an amine resulted in the formation of the lactam 2b in good yield in both single- and double-stranded forms, showing that amine modification of biomolecules by an ODN containing 1 is possible under physiologic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号