首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The crystal structures of MOFs [Cu(PDA)(Phen)(H2O)]2 · 5H2O (I) and [Cu(PZCA)2(H2O)2] · 2H2O (II) (H2PDA = pyridine-2,6-dicarboxylic acid, Phen = 1,10-phenanthroline, HPZCA = pyrazine-2-carboxylic acid, H2PZDA = pyrazine-2,3-carboxylic acid) have been prepared under hydrothermal conditions. These MOFs have been characterized by element analysis, single-crystal X-ray diffraction, thermogravimetric analyses and IR spectroscopy. 3D frameworks of MOFs I and II are fabricated from zero-dimensional (0D) motifs through hydrogen bonds and π-π interactions. In MOF II, the PZCA ligand comes from in situ decarboxylation of the part of pyrazine-2,3-dicarboxylic acid (H2PZDA). Luminescent emissions bands of MOF I in methanol have been measured at room temperature and it displays selectivity to Zn2+, Cu2+, Pb2+, and Cd2+ ions. Cyclic voltammetry of MOFs I and II showed that the Cu(II/I) couple is irreversible.  相似文献   

2.
《先进技术聚合物》2018,29(2):867-873
The push to advance efficient, renewable, and clean energy sources has brought with it an effort to generate materials that are capable of storing hydrogen. Metal–organic framework materials (MOFs) have been the focus of many such studies as they are categorized for their large internal surface areas. We have addressed one of the major shortcomings of MOFs (their processibility) by creating and 3D printing a composite of acrylonitrile butadiene styrene (ABS) and MOF‐5, a prototypical MOF, which is often used to benchmark H2 uptake capacity of other MOFs. The ABS‐MOF‐5 composites can be printed at MOF‐5 compositions of 10% and below. Other physical and mechanical properties of the polymer (glass transition temperature, stress and strain at the breaking point, and Young's modulus) either remain unchanged or show some degree of hardening due to the interaction between the polymer and the MOF. We do observe some MOF‐5 degradation through the blending process, likely due to the ambient humidity through the purification and solvent casting steps. Even with this degradation, the MOF still retains some of its ability to uptake H2, seen in the ability of the composite to uptake more H2 than the pure polymer. The experiments and results described here represent a significant first step toward 3D printing MOF‐5‐based materials for H2 storage.  相似文献   

3.
Two metal–organic frameworks (MOFs) with Zr–oxo secondary building units (SBUs) were prepared by using p,p′‐terphenyldicarboxylate (TPDC) bridging ligands pre‐functionalized with orthogonal succinic acid (MOF‐ 1 ) and maleic acid groups (MOF‐ 2 ). Single‐crystal X‐ray structure analysis of MOF‐ 1 provides the first direct evidence for eight‐connected SBUs in UiO‐type MOFs. In contrast, MOF‐ 2 contains twelve‐connected SBUs as seen in the traditional UiO MOF topology. These structural assignments were confirmed by extended X‐ray absorption fine structure (EXAFS) analysis. The highly porous MOF‐ 1 is an excellent fluorescence sensor for metal ions with the detection limit of <0.5 ppb for Mn2+and three to four orders of magnitude greater sensitivity for metal ions than previously reported luminescent MOFs.  相似文献   

4.
The rapid growth in the field of metal-organic frameworks (MOFs) over recent years has highlighted their high potential in a variety of applications. For biological and environmental applications MOFs with low toxicity are vitally important to avoid any harmful effects. For this reason, Ca-based MOFs are highly desirable owing to their low cost and high biocompatibility. Useful Ca MOFs are still rare owing to the ionic character and large size of the Ca2+ ion tending to produce dense phases. Presented here is a novel Ca-based MOF containing 2,3-dihyrdoxyterephthalate (2,3-dhtp) linkers Ca(2,3-dhtp)(H2O) (SIMOF-4). The material undergoes a phase transformation on heating, which can be followed by variable temperature powder X-ray diffraction. The structure of the high temperature form was obtained using single-crystal X-ray diffraction. The electrochemical properties of SIMOF-4 were also investigated for use in a Na ion battery.  相似文献   

5.
Two isostructural CoII‐based metal–organic frameworks (MOFs) with the opposite framework charges have been constructed, which can be simply controlled by changing the tetrazolyl or triazolyl terminal in two bifunctional ligands. Notably, the cationic MOF 2 can adsorb much more C2H2 than the anionic MOF 1 with an increase of 88 % for C2H2 uptake at 298 K in spite of more active nitrogen sites in 1 . Theoretical calculations indicate that both nitrate and triazolyl play vital roles in C2H2 binding and the C2H2 adsorption isotherm confirms that the enhanced C2H2 uptake for 2 (225 and 163 cm3g?1 at 273 and 298 K) is exceptionally high for MOF materials without open metal sites or uncoordinated polar atom groups on the frameworks.  相似文献   

6.
To investigate the coordination chemistry of modbc (2-methyl-6-oxygen-1,6-dihydro-3,4'-bipyridine-5-carbonitrile) with ZnII and CdII salts under the solvothermal conditions, six new MOFs with the formulas [Zn(modbc)2(mpa)]n ( 1 ), [Zn(modbc)(mpa)(H2O)]n ( 2 ), [Zn(modbc)(pa)0.5(H2O)]n ( 3 ), [Cd(modbc)(pa)0.5(H2O)]n ( 4 ), [Zn(modbc)2(tpa)]n ( 5 ), and [Cd(modbc)2(pda)(H2O)]n ( 6 ) (mpa = m-phthalic acid; pa = pyromellitic acid; tpa = terephthalic acid; pda = pentane diacid) were successfully synthesized by solvothermal reaction and fully characterized by elemental analysis, IR spectroscopy, single crystal, powder X-ray diffraction, thermal and photoluminescence properties. Though MOFs 3 and 4 have the same structure, we have obtained three different kinds of coordination configurations by the X-ray diffration analysis. Compared with 1 and 2 , coordination water has no effect on the solid fluorescence emission of MOFs. It is worth noting that the fluorescence intensity of 3 containing central ZnII atoms is very strong, whereas that of isomorphism 4 containing central CdII atoms has almost no fluorescence emission, showing that metal ions have very important influence on the fluorescence emission. Further, we found that solvents had an important effect on the fluorescence emission in liquid fluorescence of MOFs 1 – 6 .  相似文献   

7.
The design and synthesis of metal–organic frameworks (MOFs) have attracted much interest due to the intriguing diversity of their architectures and topologies. However, building MOFs with different topological structures from the same ligand is still a challenge. Using 3‐nitro‐4‐(pyridin‐4‐yl)benzoic acid (HL) as a new ligand, three novel MOFs, namely poly[[(N,N‐dimethylformamide‐κO)bis[μ2‐3‐nitro‐4‐(pyridin‐4‐yl)benzoato‐κ3O,O′:N]cadmium(II)] N,N‐dimethylformamide monosolvate methanol monosolvate], {[Cd(C12H7N2O4)2(C3H7NO)]·C3H7NO·CH3OH}n, ( 1 ), poly[[(μ2‐acetato‐κ2O:O′)[μ3‐3‐nitro‐4‐(pyridin‐4‐yl)benzoato‐κ3O:O′:N]bis[μ3‐3‐nitro‐4‐(pyridin‐4‐yl)benzoato‐κ4O,O′:O′:N]dicadmium(II)] N,N‐dimethylacetamide disolvate monohydrate], {[Cd2(C12H7N2O4)3(CH3CO2)]·2C4H9NO·H2O}n, ( 2 ), and catena‐poly[[[diaquanickel(II)]‐bis[μ2‐3‐nitro‐4‐(pyridin‐4‐yl)benzoato‐κ2O:N]] N,N‐dimethylacetamide disolvate], {[Ni(C12H7N2O4)2(H2O)2]·2C4H9NO}n, ( 3 ), have been prepared. Single‐crystal structure analysis shows that the CdII atom in MOF ( 1 ) has a distorted pentagonal bipyramidal [CdN2O5] coordination geometry. The [CdN2O5] units as 4‐connected nodes are interconnected by L? ligands to form a fourfold interpenetrating three‐dimensional (3D) framework with a dia topology. In MOF ( 2 ), there are two crystallographically different CdII ions showing a distorted pentagonal bipyramidal [CdNO6] and a distorted octahedral [CdN2O4] coordination geometry, respectively. Two CdII ions are connected by three carboxylate groups to form a binuclear [Cd2(COO)3] cluster. Each binuclear cluster as a 6‐connected node is further linked by acetate groups and L? ligands to produce a non‐interpenetrating 3D framework with a pcu topology. MOF ( 3 ) contains two crystallographically distinct NiII ions on special positions. Each NiII ion adopts an elongated octahedral [NiN2O4] geometry. Each NiII ion as a 4‐connected node is linked by L? ligands to generate a two‐dimensional network with an sql topology, which is further stabilized by two types of intermolecular OW—HW…O hydrogen bonds to form a 3D supramolecular framework. MOFs ( 1 )–( 3 ) were also characterized by powder X‐ray diffraction, IR spectroscopy and thermogravimetic analysis. Furthermore, the solid‐state photoluminescence of HL and MOFs ( 1 ) and ( 2 ) have been investigated. The photoluminescence of MOFs ( 1 ) and ( 2 ) are enhanced and red‐shifted with respect to free HL. The gas adsorption investigation of MOF ( 2 ) indicates a good separation selectivity (71) of CO2/N2 at 273 K (i.e. the amount of CO2 adsorption is 71 times higher than N2 at the same pressure).  相似文献   

8.
Two new metal–organic frameworks (MOFs), namely, three‐dimensional poly[diaquabis{μ2‐1,4‐bis[(2‐methyl‐1H‐imidazol‐1‐yl)methyl]benzene}bis(μ2‐glutarato)dinickel(II)] monohydrate], {[Ni2(C5H6O4)2(C16H18N4)2(H2O)2]·H2O}n or {[Ni2(Glu)2(1,4‐mbix)2(H2O)2]·H2O}n, ( I ), and two‐dimensional poly[[{μ2‐1,4‐bis[(2‐methyl‐1H‐imidazol‐1‐yl)methyl]benzene}(μ2‐glutarato)zinc(II)] tetrahydrate], {[Zn(C5H6O4)(C16H18N4)]·4H2O}n or {[Zn(Glu)(1,4‐mbix)]·4H2O}n ( II ), have been synthesized hydrothermally using glutarate (Glu2?) mixed with 1,4‐bis[(2‐methyl‐1H‐imidazol‐1‐yl)methyl]benzene (1,4‐mbix), and characterized by single‐crystal X‐ray diffraction, IR and UV–Vis spectroscopy, powder X‐ray diffraction, and thermogravimetric and photoluminescence analyses. NiII MOF ( I ) shows a 4‐connected 3D framework with point symbol 66, but is not a typical dia network. ZnII MOF ( II ) displays a two‐dimensional 44‐ sql network with one‐dimensional water chains penetrating the grids along the c direction. The solid‐state photoluminescence analysis of ( II ) was performed at room temperature and the MOF exhibits highly selective sensing toward Fe3+ and Cr2O72? ions in aqueous solution.  相似文献   

9.
The metal ions in a neutral Zn–MOF constructed from tritopic triacid H3L with inherent concave features, rigid core, and peripheral flexibility are found to exist in two distinct SBUs, that is, 0D and 1D. This has allowed site‐selective postsynthetic metal exchange (PSME) to be investigated and reactivities of the metal ions in two different environments in coordination polymers to be contrasted for the first time. Site‐selective transmetalation of Zn ions in the discrete environment is shown to occur in a single crystal‐to‐single crystal (SCSC) fashion, with metal ions such as Fe3+, Ru3+, Cu2+, Co2+, etc., whereas those that are part of 1D SBU sustain structural integrity, leading to novel bimetallic MOFs, which are inaccessible by conventional approaches. To the best of our knowledge, site‐selective postsynthetic exchange of an intraframework metal ion in a MOF that contains metal ions in discrete as well as polymeric SBUs is heretofore unprecedented.  相似文献   

10.
Two porous metal–organic frameworks (MOFs), [Zn3(L)(H2O)2] ? 3 DMF ? 7 H2O ( MOF‐1 ) and [(CH3)2NH2]6[Ni3(L)2(H2O)6] ? 3 DMF ? 15 H2O ( MOF‐2 ), were synthesized solvothermally (H6L=1,2,3,4,5,6‐hexakis(3‐carboxyphenyloxymethylene)benzene). In MOF ‐ 1 , neighboring ZnII trimers are linked by the backbones of L ligands to form a fascinating 3D six‐connected framework with the point symbol (412.63) (412.63). In MOF‐2 , eight L ligands bridge six NiII atoms to generate a rhombic‐dodecahedral [Ni6L8] cage. Each cage is surrounded by eight adjacent ones through sharing of carboxylate groups to yield an unusual 3D porous framework. Encapsulation of LnIII cations for tunable luminescence and small drug molecules for efficient delivery were investigated in detail for MOF‐1 .  相似文献   

11.
Metal‐organic frameworks (MOFs)‐based membranes have shown great potentials as applications in gas separation. In this work, a uniform membrane based on 2D MOF Ni3(HITP)2 (HITP=2,3,6,7,10,11‐hexaaminotriphenylene) was fabricated on ordered macroporous AAO via the filtration method. To fabricate the membrane, we obtained the Ni3(HITP)2 nanosheets as building blocks via a soft‐physical exfoliation method successfully that were confirmed by AFM and TEM. We also studied the H2, CO2 and N2 adsorption isotherms of Ni3(HITP)2 powder at room temperature, which shows Ni3(HITP)2 has high heats of adsorption for CO2 and high selectivity of CO2 over N2. Gas permeation tests indicate that the Ni3(HITP)2 membrane shows high permeance and selectivity of CO2 over N2, as well as good selectivity of H2 over N2. The ideal separation factors of CO2/N2 and H2/N2 from sing‐gas permeances are 13.6 and 7.8 respectively, with CO2 permeance of 3.15×10?6 mol?m?2?s?1?Pa?1. The membrane also showed good stability, durability and reproducibility, which are of potential interest for practical applications in the CO2 separations.  相似文献   

12.
In this work, we have demonstrated a family of diamondoid metal–organic frameworks (MOFs) based on functionalized molecular building blocks and length‐adjustable organic linkers by using a stepwise synthesis strategy. We have successfully achieved not only “design” and “control” to synthesize MOFs, but also the functionalization of both secondary building units (SBUs) and organic linkers in the same MOF for the first time. Furthermore, the results of N2 and H2 adsorption show that their surface areas and hydrogen uptake capacities are determined by the most optimal combination of functional groups from SBUs and organic linkers, interpenetration, and free volume in this system. A member of this series, DMOF‐6 exhibits the highest surface area and H2 adsorption capacity among this family of MOFs.  相似文献   

13.
Crystalline and porous covalent organic frameworks (COFs) and metal‐organic frameworks (MOFs) materials have attracted enormous attention in the field of photocatalytic H2 evolution due to their long‐range order structures, large surface areas, outstanding visible light absorbance, and tunable band gaps. In this work, we successfully integrated two‐dimensional (2D) COF with stable MOF. By covalently anchoring NH2‐UiO‐66 onto the surface of TpPa‐1‐COF, a new type of MOF/COF hybrid materials with high surface area, porous framework, and high crystallinity was synthesized. The resulting hierarchical porous hybrid materials show efficient photocatalytic H2 evolution under visible light irradiation. Especially, NH2‐UiO‐66/TpPa‐1‐COF (4:6) exhibits the maximum photocatalytic H2 evolution rate of 23.41 mmol g?1 h?1 (with the TOF of 402.36 h?1), which is approximately 20 times higher than that of the parent TpPa‐1‐COF and the best performance photocatalyst for H2 evolution among various MOF‐ and COF‐based photocatalysts.  相似文献   

14.
Single crystals of the FeII metal‐organic framework (MOF) with 1,3,5‐benzenetricarboxylate (BTC) as a linker were solvothermally obtained under air‐free conditions. X‐ray diffraction analysis of the crystals demonstrated a structure for FeII‐MOF analogous to that of [Cu3(BTC)2] (HKUST‐1). Unlike HKUST‐1, however, the FeII‐MOF did not retain permanent porosity after exchange of guest molecules. The Mössbauer spectrum of the FeII‐MOF was recorded at 80 K in zero field yielding an apparent quadrupole splitting of ΔEQ = 2.43 mm · s–1, and an isomer shift of δ = 1.20 mm · s–1, consistent with high‐spin central iron(II) atoms. Air exposure of the FeII‐MOF was found to result in oxidation of the metal atoms to afford FeIII. These results demonstrate that FeII‐based MOFs can be prepared in similar fashion to the [Cu3(BTC)2], but that they lack permanent porosity when degassed.  相似文献   

15.
We report a porous three-dimensional anionic tetrazolium based CuI−MOF 1 , which is capable of cleaving the N−H bond of ammonia and primary amine, as well as the O−H bond of H2O along with spontaneous H2 evolution. In the gas-solid phase reaction of 1 with ammonia and water vapor, CuI−MOF 1 was gradually oxidized to NH2−CuII−MOF and OH−CuII−MOF, through single-crystal-to-single-crystal (SCSC) structural transformations, which was confirmed by XPS, PXRD and X-ray single-crystal diffraction. Density functional theory (DFT) demonstrated that CuI−MOF could lower N−H bond dissociation free energy of ammonia through coordination-induced bond weakening and promote H2 evolution by the reduction potential of 1 . To our knowledge, this is the first example of MOFs that activate ammonia and amine in gas-solid manner.  相似文献   

16.
Metal-organic frameworks (MOFs) have been rapidly developed for their broad applications in many different chemistry and materials fields. In this work, a multi-dentate building block 5-(4-(tetrazol-5-yl)phenyl)-isophthalic acid (H3L) containing tetrazole and carbolxylate moieties was employed for the synthesis of a two-dimensional (2D) lanthanide MOF [La(HL)(DMF)2(NO3)] (DMF = N,N-dimethylformamide) (1) under solvothermal condition. The fluorescent sensing application of 1 was investigated. 1 exhibits high sensitivity recognition for antibiotic nitrofurantoin (Ksv: 3.0 × 103 M−1 and detection limit: 17.0 μM) and amino acid l-tyrosine (Ksv: 1.4 × 104 M−1 and detection limit: 3.6 μM). This work provides a feasible detection platform of 2D MOFs for highly sensitive discrimination of antibiotics and amino acids.  相似文献   

17.
With the rapid development of metal–organic frameworks (MOFs), a variety of MOFs and their derivatives have been synthesized and reported in recent years. Commonly, multifunctional aromatic polycarboxylic acids and nitrogen‐containing ligands are employed to construct MOFs with fascinating structures. 4,4′,4′′‐(1,3,5‐Triazine‐2,4,6‐triyl)tribenzoic acid (H3TATB) and the bidentate nitrogen‐containing ligand 1,3‐bis[(imidazol‐1‐yl)methyl]benzene (bib) were selected to prepare a novel ZnII‐MOF under solvothermal conditions, namely poly[[tris{μ‐1,3‐bis[(imidazol‐1‐yl)methyl]benzene}bis[μ3‐4,4′,4′′‐(1,3,5‐triazine‐2,4,6‐triyl)tribenzoato]trizinc(II)] dimethylformamide disolvate trihydrate], {[Zn3(C24H12N3O6)2(C14H14N4)3]·2C3H7NO·3H2O}n ( 1 ). The structure of 1 was characterized by single‐crystal X‐ray diffraction, IR spectroscopy and powder X‐ray diffraction. The properties of 1 were investigated by thermogravimetric and fluorescence analysis. Single‐crystal X‐ray diffraction shows that 1 belongs to the monoclinic space group Pc. The asymmetric unit contains three crystallographically independent ZnII centres, two 4,4′,4′′‐(1,3,5‐triazine‐2,4,6‐triyl)tribenzoate (TATB3?) anions, three complete bib ligands, one and a half free dimethylformamide molecules and three guest water molecules. Each ZnII centre is four‐coordinated and displays a distorted tetrahedral coordination geometry. The ZnII centres are connected by TATB3? anions to form an angled ladder chain with large windows. Simultaneously, the bib ligands link ZnII centres to give a helical Zn–bib–Zn chain. Furthermore, adjacent ladders are bridged by Zn–bib–Zn chains to form a fascinating three‐dimensional self‐penetrated framework with the short Schläfli symbol 65·7·813·9·10. In addition, the luminescence properties of 1 in the solid state and the fluorescence sensing of metal ions in suspension were studied. Significantly, compound 1 shows potential application as a fluorescent sensor with sensing properties for Zr4+ and Cu2+ ions.  相似文献   

18.
Two-dimensional conjugated metal–organic frameworks (2D c-MOFs) are emerging as a unique class of electronic materials. However, 2D c-MOFs with band gaps in the Vis-NIR and high charge carrier mobility are rare. Most of the reported conducting 2D c-MOFs are metallic (i.e. gapless), which largely limits their use in logic devices. Herein, we design a phenanthrotriphenylene-based, D2h-symmetric π-extended ligand ( OHPTP ), and synthesize the first rhombic 2D c-MOF single crystals ( Cu2(OHPTP) ). The continuous rotation electron diffraction (cRED) analysis unveils the orthorhombic crystal structure at the atomic level with a unique slipped AA stacking. The Cu2(OHPTP) is a p-type semiconductor with an indirect band gap of ≈0.50 eV and exhibits high electrical conductivity of 0.10 S cm−1 and high charge carrier mobility of ≈10.0 cm2 V−1 s−1. Theoretical calculations underline the predominant role of the out-of-plane charge transport in this semiquinone-based 2D c-MOF.  相似文献   

19.
Faradaic reactions including charge transfer are often accompanied with diffusion limitation inside the bulk. Conductive two-dimensional frameworks (2D MOFs) with a fast ion transport can combine both—charge transfer and fast diffusion inside their porous structure. To study remaining diffusion limitations caused by particle morphology, different synthesis routes of Cu-2,3,6,7,10,11-hexahydroxytriphenylene (Cu3(HHTP)2), a copper-based 2D MOF, are used to obtain flake- and rod-like MOF particles. Both morphologies are systematically characterized and evaluated for redox-active Li+ ion storage. The redox mechanism is investigated by means of X-ray absorption spectroscopy, FTIR spectroscopy and in situ XRD. Both types are compared regarding kinetic properties for Li+ ion storage via cyclic voltammetry and impedance spectroscopy. A significant influence of particle morphology for 2D MOFs on kinetic aspects of electrochemical Li+ ion storage can be observed. This study opens the path for optimization of redox active porous structures to overcome diffusion limitations of Faradaic processes.  相似文献   

20.
Design and synthesis of stable, active and cost-effective electrocatalyst for water splitting applications is an emerging area of research, given the depletion of fossil fuels. Herein, two isostructural NiII redox-active metal–organic frameworks (MOFs) containing flexible tripodal trispyridyl ligand ( L ) and linear dicarboxylates such as terephthalate (TA) and 2-aminoterphthalate (H2NTA) are studied for their catalytic activity in oxygen evaluation reaction (OER). The 2D-layered MOFs form 3D hydrogen bonded frameworks containing one-dimensional hydrophilic channels that are filled with water molecules. The electrochemical studies reveal that MOFs display an efficient catalytic activity towards oxygen evolution reaction in alkaline conditions with an overpotential as low as 356 mV. Further, these 2D-MOFs exhibit excellent ability to adsorb water vapor (180–230 cc g−1 at 273 K) and CO2 (33 cc g−1 at 273 K). The presence of hydrophilic functionality in the frameworks was found to significantly enhance the electrocatalytic activity as well as H2O sorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号