首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Alkali and alkaline-earth metal ion–solvent co-intercalation reactions have attracted extensive attention in recent years owing to the advantage of the absence of a desolvation process, which generally results in fast kinetics and good rate performance for batteries. However, less attention has been paid to summarizing the mechanism, performance and other related aspects about ion–solvent co-intercalation reaction in batteries. A summary of alkali and alkaline-earth metal ion–solvent co-intercalation reactions in nonaqueous rechargeable batteries is presented in this review, which mainly focuses on the electrochemical performance, ion–solvent co-intercalation mechanism, conditions for reversible ion–solvent co-intercalation and potential for practical application. It is suggested that future research should focus on reducing the redox potential of the ion–solvent co-intercalation reaction to achieve high energy-density and power-density full cells. This review provides an understanding of alkali and alkaline-earth metal ion–solvent co-intercalation reactions in nonaqueous rechargeable batteries and will serve as significant guidance for researchers to further develop ion–solvent co-intercalation reactions for fast-charging batteries.

This review summarizes the recent progress of alkali and alkaline-earth metal ion–solvent co-intercalation reactions in nonaqueous rechargeable batteries.  相似文献   

2.
In this survey paper the main properties of metal–metal bonds are summarized. The results of several calculations on compounds containing such bonds are analyzed.  相似文献   

3.
This study presents the construction and dielectric properties investigation of atomic-layer-deposition Al2O3/TiO2/HfO2 dielectric-film-based metal–insulator–metal (MIM) capacitors. The influence of the dielectric layer material and thickness on the performance of MIM capacitors are also systematically investigated. The morphology and surface roughness of dielectric films for different materials and thicknesses are analyzed via atomic force microscopy (AFM). Among them, the 25 nm Al2O3-based dielectric capacitor exhibits superior comprehensive electrical performance, including a high capacitance density of 7.89 fF·µm−2, desirable breakdown voltage and leakage current of about 12 V and 1.4 × 10−10 A·cm−2, and quadratic voltage coefficient of 303.6 ppm·V−2. Simultaneously, the fabricated capacitor indicates desirable stability in terms of frequency and bias voltage (at 1 MHz), with the corresponding slight capacitance density variation of about 0.52 fF·µm−2 and 0.25 fF·µm−2. Furthermore, the mechanism of the variation in capacitance density and leakage current might be attributed to the Poole–Frenkel emission and charge-trapping effect of the high-k materials. All these results indicate potential applications in integrated passive devices.  相似文献   

4.
Facing the explosive growth of data, a number of new micro-nano devices with simple structure, low power consumption, and size scalability have emerged in recent years, such as neuromorphic computing based on memristor. The selection of resistive switching layer materials is extremely important for fabricating of high performance memristors. As an organic-inorganic hybrid material, metal-organic frameworks (MOFs) have the advantages of both inorganic and organic materials, which makes the memristors using it as a resistive switching layer show the characteristics of fast erasing speed, outstanding cycling stability, conspicuous mechanical flexibility, good biocompatibility, etc. Herein, the recent advances of MOFs-based memristors in materials, devices, and applications are summarized, especially the potential applications of MOFs-based memristors in data storage and neuromorphic computing. There also are discussions and analyses of the challenges of the current research to provide valuable insights for the development of MOFs-based memristors.  相似文献   

5.
An original multi-cooperative catalytic approach was developed by combining metal–ligand cooperation and Lewis acid activation. The [(SCS)Pd]2 complex featuring a non-innocent indenediide-based ligand was found to be a very efficient and versatile catalyst for the Conia-ene reaction, when associated with Mg(OTf)2. The reaction operates at low catalytic loadings under mild conditions with HFIP as a co-solvent. It works with a variety of substrates, including those bearing internal alkynes. It displays complete 5-exo vs. 6-endo regio-selectivity. In addition, except for the highly congested tBu-substituent, the reaction occurs with high Z vs. E stereo-selectivity, making it synthetically useful and complementary to known catalysts.

An original multi-cooperative catalytic approach was developed by combining metal–ligand cooperation and Lewis acid activation.  相似文献   

6.
Hybrid rocket propulsion can contribute to reduce launch costs by simplifying engine design and operation. Hypergolic propellants, i.e. igniting spontaneously and immediately upon contact between fuel and oxidizer, further simplify system integration by removing the need for an ignition system. Such hybrid engines could also replace currently popular hypergolic propulsion approaches based on extremely toxic and carcinogenic hydrazines. Here we present the first demonstration for the use of hypergolic metal–organic frameworks (HMOFs) as additives to trigger hypergolic ignition in conventional paraffin-based hybrid engine fuels. HMOFS are a recently introduced class of stable and safe hypergolic materials, used here as a platform to bring readily tunable ignition and combustion properties to hydrocarbon fuels. We present an experimental investigation of the ignition delay (ID, the time from first contact with an oxidizer to ignition) of blends of HMOFs with paraffin, using White Fuming Nitric Acid (WFNA) as the oxidizer. The majority of measured IDs are under 10 ms, significantly below the upper limit of 50 ms required for functional hypergolic propellant, and within the ultrafast ignition range. A theoretical analysis of the performance of HMOFs-containing fuels in a hybrid launcher engine scenario also reveals the effect of the HMOF mass fraction on the specific impulse (Isp) and density impulse (ρIsp). The use of HMOFs to produce paraffin-based hypergolic fuels results in a slight decrease of the Isp and ρIsp compared to that of pure paraffin, similar to the effect observed with Ammonia Borane (AB), a popular hypergolic additive. HMOFs however have a much higher thermal stability, allowing for convenient mixing with hot liquid paraffin, making the manufacturing processes simpler and safer compared to other hypergolic additives such as AB.

Hypergolic hybrid rocket propulsion, achieved through the addition of metal–organic frameworks, can contribute to reduce launch costs by simplifying engine design and operation.  相似文献   

7.
The electrochemical detection of hydrogen peroxide (H2O2) has become more and more important in industrial production, daily life, biological process, green energy chemistry, and other fields (especially for the detection of low concentration of H2O2). Metal organic frameworks (MOFs) are promising candidates to replace the established H2O2 sensors based on precious metals or enzymes. This review summarizes recent advances in MOF-based H2O2 electrochemical sensors, including conductive MOFs, MOFs with chemical modifications, MOFs-composites, and MOF derivatives. Finally, the challenges and prospects for the optimization and design of H2O2 electrochemical sensors with ultra-low detection limit and long-life are presented.  相似文献   

8.
9.
Photothermal therapy (PTT), as a noninvasive and local treatment, has emerged as a promising anti-tumor strategy with minimal damage to normal tissue under spatiotemporally controllable irradiation. However, the necrosis of cancer cells during PTT will induce an inflammatory reaction, which may motivate tumor regeneration and resistance to therapy. In this study, polyoxometalates and a chloroquine diphosphate (CQ) co-loaded metal–organic framework nanoplatform with hyaluronic acid coating was constructed for efficient ovarian cancer therapy and anti-inflammation. Our results demonstrated that this nanoplatform not only displayed considerable photothermal therapeutic capacity under 808 nm near-infrared laser, but also had an impressive anti-inflammatory capacity by scavenging reactive oxygen species in the tumor microenvironment. CQ with pH dependence was used for the deacidification of lysosomes and the inhibition of autophagy, cutting off a self-protection pathway induced by cell necrosis–autophagy, and achieving the synergistic treatment of tumors. Therefore, we combined the excellent properties of these materials to synthesize a nanoplatform and explored its therapeutic effects in various aspects. This work provides a promising novel prospect for PTT/anti-inflammation/anti-autophagy combinations for efficient ovarian cancer treatment through the fine tuning of material design.  相似文献   

10.
11.
Water adsorption in metal–organic frameworks has gained a lot of scientific attention recently due to the potential to be used in adsorption-based water capture. Functionalization of their organic linkers can tune water adsorption properties by increasing the hydrophilicity, thus altering the shape of the water adsorption isotherms and the overall water uptake. In this work, a large set of functional groups is screened for their interaction with water using ab initio calculations. The functional groups with the highest water affinities form two hydrogen bonds with the water molecule, acting as H-bond donor and H-bond acceptor simultaneously. Notably, the highest binding energy was calculated to be −12.7 Kcal/mol for the -OSO3H group at the RI-MP2/def2-TZVPP-level of theory, which is three times larger than the reference value. Subsequently, the effect of the functionalization strategy on the water uptake is examined on a selected set of functionalized MOF-74-III by performing Monte Carlo simulations. It was found that the specific groups can increase the hydrophilicity of the MOF and enhance the water uptake with respect to the parent MOF-74-III for relative humidity (RH) values up to 30%. The saturation water uptake exceeded 800 cm3/cm3 for all candidates, classifying them among the top performing materials for water harvesting.  相似文献   

12.
In this review, aspects of the synthesis, framework topologies, and biomedical applications of highly porous metal–organic frameworks are discussed. The term “highly porous metal–organic frameworks” (HPMOFs) is used to denote MOFs with a surface area larger than 4000 m2 g−1. Such compounds are suitable for the encapsulation of a variety of large guest molecules, ranging from organic dyes to drugs and proteins, and hence they can address major contemporary challenges in the environmental and biomedical field. Numerous synthetic approaches towards HPMOFs have been developed and discussed herein. Attempts are made to categorise the most successful synthetic strategies; however, these are often not independent from each other, and a combination of different parameters is required to be thoroughly considered for the synthesis of stable HPMOFs. The majority of the HPMOFs in this review are of special interest not only because of their high porosity and fascinating structures, but also due to their capability to encapsulate and deliver drugs, proteins, enzymes, genes, or cells; hence, they are excellent candidates in biomedical applications that involve drug delivery, enzyme immobilisation, gene targeting, etc. The encapsulation strategies are described, and the MOFs are categorised according to the type of biomolecule they are able to encapsulate. The research field of HPMOFs has witnessed tremendous development recently. Their intriguing features and potential applications attract researchers’ interest and promise an auspicious future for this class of highly porous materials.  相似文献   

13.
About 70 years ago, in the framework of his theory of chemical bonding, Pauling proposed an empirical correlation between the bond valences (or effective bond orders (BOs)) and the bond lengths. Till now, this simple correlation, basic in the bond valence model (BVM), is widely used in crystal chemistry, but it was considered irrelevant for metal–metal bonds. An extensive analysis of the quantum chemistry data computed in the last years confirms very well the validity of Pauling’s correlation for both localized and delocalized interactions. This paper briefly summarizes advances in the application of the BVM for compounds with TM–TM bonds (TM = transition metal) and provides further convincing examples. In particular, the BVM model allows for very simple but precise calculations of the effective BOs of the TM–TM interactions. Based on the comparison between formal and effective BOs, we can easily describe steric and electrostatic effects. A possible influence of these effects on materials stability is discussed.  相似文献   

14.
A three-component reaction between secondary phosphines, elemental selenium, and calcium or barium hydroxides in a molar ratio of 1: 2: 0.5 proceeds under mild conditions (70?C75 °C, 10 min, aqueous ethanol) to give previously unknown Ca and Ba diselenophosphinates (78?C89%).  相似文献   

15.
The mixed-ligand complexes of the formula [M(CF3COO)2(MEA) n ] (MEA is monoethanolamine; M = Ca (I) and Sr (II), n = 1.5; M = Ba (III), (n = 1) were obtained from appropriate salts M(CF3COO)2 · nH2O and MEA in ethanol. Complexes I–III were characterized by elemental analysis data and IR spectra. Slow crystallization of a solution of complex III in air gave a single crystal of the formula [Ba(CF3COO)2(MEA)(H2O)], which is a coordination polymer with C.N.(Ba) 9 (X-ray diffraction data). Thermal analysis showed that complexes I–III decompose under argon and in air to the corresponding fluorides at T < 400°C.  相似文献   

16.
Zinc–air batteries (ZABs) are regarded as ideal candidates for next-generation energy storage equipment due to their high energy density, non-toxicity, high safety, and environmental friendliness. However, the slow oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) kinetics on the air cathode limit their efficiency and the development of highly efficient, low cost and stable bifunctional electrocatalysts is still challenging. Metal–Organic Framework (MOF) based bifunctional oxygen electrocatalysts have been demonstrated as promising alternative catalysts due to the regular structure, tunable chemistry, high specific surface area, and simple and easy preparation of MOFs, and great progress has been made in this area. Herein, we summarize the latest research progress of MOF-based bifunctional oxygen electrocatalysts for ZABs, including pristine MOFs, derivatives of MOFs and MOF composites. The effects of the catalysts'' composites, morphologies, specific surface areas and active sites on catalytic performances are specifically addressed to reveal the underlying mechanisms for different catalytic activity of MOF based catalysts. Finally, the main challenges and prospects for developing advanced MOF-based bifunctional electrocatalysts are proposed.

The research progress of MOF-based bifunctional oxygen electrocatalysts for zinc–air batteries is reviewed and the main challenges and prospects for developing advanced MOF-based bifunctional electrocatalysts are proposed.  相似文献   

17.
Metal–ligand cooperativity is an essential feature of bioinorganic catalysis. The design principles of such cooperativity in metalloenzymes are underexplored, but are critical to understand for developing efficient catalysts designed with earth abundant metals for small molecule activation. The simple substrate requirements of reversible proton reduction by the [NiFe]-hydrogenases make them a model bioinorganic system. A highly conserved arginine residue (R355) directly above the exogenous ligand binding position of the [NiFe]-catalytic core is known to be essential for optimal function because mutation to a lysine results in lower catalytic rates. To expand on our studies of soluble hydrogenase-1 from Pyrococcus furiosus (Pf SH1), we investigated the role of R355 by site-directed-mutagenesis to a lysine (R355K) using infrared and electron paramagnetic resonance spectroscopic probes sensitive to active site redox and protonation events. It was found the mutation resulted in an altered ligand binding environment at the [NiFe] centre. A key observation was destabilization of the Nia3+–C state, which contains a bridging hydride. Instead, the tautomeric Nia+–L states were observed. Overall, the results provided insight into complex metal–ligand cooperativity between the active site and protein scaffold that modulates the bridging hydride stability and the proton inventory, which should prove valuable to design principles for efficient bioinspired catalysts.

Metal–ligand cooperativity is an essential feature of bioinorganic catalysis.  相似文献   

18.
Oxygen is a critical gas in numerous industries and is produced globally on a gigatonne scale, primarily through energy-intensive cryogenic distillation of air. The realization of large-scale adsorption-based air separations could enable a significant reduction in associated worldwide energy consumption and would constitute an important component of broader efforts to combat climate change. Certain small-scale air separations are carried out using N2-selective adsorbents, although the low capacities, poor selectivities, and high regeneration energies associated with these materials limit the extent of their usage. In contrast, the realization of O2-selective adsorbents may facilitate more widespread adoption of adsorptive air separations, which could enable the decentralization of O2 production and utilization and advance new uses for O2. Here, we present a detailed evaluation of the potential of metal–organic frameworks (MOFs) to serve as O2-selective adsorbents for air separations. Drawing insights from biological and molecular systems that selectively bind O2, we survey the field of O2-selective MOFs, highlighting progress and identifying promising areas for future exploration. As a guide for further research, the importance of moving beyond the traditional evaluation of O2 adsorption enthalpy, ΔH, is emphasized, and the free energy of O2 adsorption, ΔG, is discussed as the key metric for understanding and predicting MOF performance under practical conditions. Based on a proof-of-concept assessment of O2 binding carried out for eight different MOFs using experimentally derived capacities and thermodynamic parameters, we identify two existing materials and one proposed framework with nearly optimal ΔG values for operation under user-defined conditions. While enhancements are still needed in other material properties, the insights from the assessments herein serve as a guide for future materials design and evaluation. Computational approaches based on density functional theory with periodic boundary conditions are also discussed as complementary to experimental efforts, and new predictions enable identification of additional promising MOF systems for investigation.

This Perspective summarizes progress in the development of O2-selective metal–organic frameworks for adsorptive air separations and identifies key metrics and design considerations toward optimizing material performance for practical applications.  相似文献   

19.
The rigid [6]ferrocenophane, L1, was synthesised by condensation of 1,1′-ferrocene dicarbaldehyde with trans-1,2-diaminocyclohexane in high dilution at r.t. followed by reduction. When other experimental conditions were employed, the [6,6,6]ferrocenephane (L2) was also obtained. Both compounds were characterised by single crystal X-ray crystallography. The protonation of L1 and its metal complexation were evaluated by the effect on the electron-transfer process of the ferrocene (fc) unit of L1 using cyclic voltammetry (CV) and square wave voltammetry (SWV) in anhydrous CH3CN solution and in 0.1 M nBu4NPF6 as the supporting electrolyte. The electrochemical process of L1 between −300 and 900 mV is complicated by amine oxidation. On the other hand, an anodic shift from the fc/fc+ wave of L1 of 249, 225, 81 and 61 mV was observed by formation of Zn2+, Ni2+, Pd2+ and Cu2+ complexes, respectively. Whereas Mg2+ and Ca2+ only have with L1 weak interactions and they promote the acid-base equilibrium of L1. This reveals that L1 is an interesting molecular redox sensor for detection of Zn2+ and Ni2+, although the kinetics of the Zn2+ complex formation is much faster than that of the Ni2+ one. The X-ray crystal structure of [PdL1Cl2] was determined and showed a square–planar environment with Pd(II) and Fe(II) centres separated by 3.781(1) Å. The experimental anodic shifts were elucidated by DFT calculations on the [ML1Cl2] series and they are related to the nature of the HOMO of these complexes and a four-electron, two-orbital interaction.  相似文献   

20.
The possibility of utilization of calcium or magnesium phosphates of various composition for heavy and non-ferrous metal extraction from aqueous solutions has been studied. The efficiency of the phosphates in removal of Pb(II), Cr(III) and Fe(III) ions has been shown to decrease in the following sequence: Mg3(PO4)2>MgNH4PO4>Ca3(PO4)2>CaHPO4>Ca10(PO4)6(OH)2 which is inverse to their hydrolytic stability series. It has been established that phosphates of non-apatite structure are capable of binding up to 12 mmol g−1 of the named heavy metals by a chemical interaction. Hydroxyapatite interacts with the polyvalent metal ions via either the above mentioned or ion-exchange mechanism, depending on preparation method used for the apatite and the nature of metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号