首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Solid‐state cross‐polarization magic angle spinning 13C, 77Se and 15N NMR spectra were recorded for 1,3‐imidazolidine‐2‐selenone, its N‐substituted derivatives and some related compounds. The spinning sideband manifold intensities were used to obtain principal values of 13C and 77Se chemical shift tensors. Large selenium chemical shift anisotropies were observed for these selenones. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Pb‐containing hydroxylapatite phases synthesized under aqueous conditions were investigated by X‐ray diffraction and solid‐state nuclear magnetic resonance (NMR) techniques to determine the Pb, Ca distribution. 31P and 1H magic‐angle spinning (MAS) NMR results indicate slight shifts of the isotropic chemical shift with increased Ca content and complex lineshapes at compositions with near equal amounts of Ca and Pb. 31P{207Pb} and 1H{207Pb} rotational‐echo double resonance (REDOR) results for intermediate compositions show that resolved spectral features cannot be assigned simply in terms of local Ca, Pb configurations or coexisting phases. 207Pb MAS NMR spectra are easily obtained for these materials and contain well‐resolved resonances for crystallographically unique A1 and A2 Pb sites. Splitting of the A1 and A2 207Pb resonances for pure hydroxyl‐pyromorphite (Pb10(PO4)6(OH)2) compared to natural pyromorphite (Pb5(PO4)3Cl) suggests symmetry reduced from hexagonal. We find that 207Pb{1H} CP/MAS NMR is impractical in Pb‐rich hydroxylapatites due to fast 207Pb relaxation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
In this article, we report on the process for creating microcellular and nanocellular polysulfone (PSU) foams. Microcellular foams with cell size up to 8 µm and nanocellular foams with cell size in the range of 20–30 nm were created. A range of CO2 concentration was achieved by varying saturation temperature, from 5% at 60 °C to 14.7% at ?10 °C. The CO2 concentration has a strong influence on the cellular structure. There exists a critical concentration window, between 10.7% and 12.3%, within which cell nucleation densities increase rapidly and cell sizes drop from micrometer range to below 1 µm into the nanometer range. Nanofoams with cell nucleation densities exceeding 1015 cells/cm3 and void fraction of up to 48% are achieved. At the high CO2 concentration region, the change from closed nanocellular structure to bicontinuous nanoporous structure is observed. Also, nanostructures on the cell wall of microcells are observed and believed to be formed via stress‐induced nucleation/spinodal decomposition. The PSU nanofoams produced in this study present an opportunity to produce polymer nanofoams with a relatively high service temperature. The ability to create cells of different length scales provides an opportunity to study the effect of cell size on the foams properties. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 975–985  相似文献   

4.
In aqueous media, ethylene glycol substituted polyisocyanopeptides (PICPs) change their state (undergo a sol‐to‐gel transition) as a response to temperature. This makes them promising materials for various biomedical applications, for instance, for controlled drug release and non‐damaging wound dressing. To utilize PICP in biomedical applications, understanding of the origin of the gelation process is needed, but this is experimentally difficult because of the notoriously low gelator concentration in combination with the slow polymer dynamics in the sample. This paper describes a detailed characterization of the dried state of PICPs by solid‐state NMR measurements. Both the 13C and the 1H NMR resonances were assigned using a combination of 1D cross‐polarization magic angle spinning, 2D 13C–1H heteronuclear correlation spectra and 1H–1H single quantum–double quantum experiments. In addition, the chemical groups involved in dipolar interaction with each other were used to discuss the dynamics and spatial conformation of the polymer. In contrast to other PICP polymers, two resonances for the backbone carbon are observed, which are present in equal amounts. The possible origin of these resonances is discussed in the last section of this work. The data obtained during the current studies will be further used in elucidating mechanisms of the bundling and gelation. A comprehensive picture will make it possible to tailor polymer properties to meet specific needs in different applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
In this article, we have applied solid‐state 13C NMR techniques, cross‐polarization/magic‐angle spinning (CP/MAS), and single‐pulse 13C NMR to characterize the NB conformation of the cyclo‐olefin copolymer. The copolymers containing higher NB contents produce more NB blocks according to 13C CP/MAS spectral analysis. In addition, NB‐dyad‐based conformations are able to induce peak splitting in the region of 49–52 ppm. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2554–2563, 2000  相似文献   

6.
A new monomer, 2,3,6,7,10,11‐hexa(methacrylate) triphenylene (HMTP), and its crystals have been successfully synthesized, and the solid‐state polymerization under UV irradiation has been investigated. The photo polymerization of HMTP in solid was confirmed by the reduction of vinyl bonds in the FT‐IR and UV spectra of PHMTP in comparison with the corresponding spectra of its precursor. Thus, IR spectroscope was used to follow the polymerization of HMTP crystals under UV irradiation, and kinetic studies show a first‐order reaction with rate constant of 6.12 × 10?3 min?1. This value is slightly larger than that measured by the weight method. The polarizing optical microscope and X‐ray diffraction were used to study the crystal structure difference between the polymers and its monomer. The results show that the polymers' crystals obtained from photo polymerization kept the monomer crystal lattice. Because of strong overlap between the π‐electron of the triphenylene, the monomer and polymer crystals showed different fluorescence properties. All these results proved that the photo polymerization of HMTP crystals is governed by the packing structure of monomer molecules; in other words, this reaction is just lattice controlled polymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1526–1534, 2005  相似文献   

7.
We here review the principles and applications of solid‐state NMR spectroscopy of quadrupolar nuclei, with a special emphasis on structural studies of inorganic solids. Most NMR‐observable nuclei have spin I > 1/2, and possess a quadrupole moment. The resulting quadrupolar interaction severely broadens the resonances, but also encapsulates valuable information about the symmetry of the electronic surroundings of the observed nucleus. The effect of the quadrupolar interaction, as well as that of the chemical shift and dipolar interaction, on solid‐state NMR spectra is examined in this article. To regain good resolution, specifically designed NMR techniques exist to remove the quadrupolar broadening, i.e. overtone and MQMAS spectroscopy, the principles of which are outlined here. In addition, the possibility of distance measurements via the dipolar interaction using the REDOR technique is discussed. The combined information derived from distance measurements, quadrupolar and chemical shift parameters can be helpful for determination of the crystal structure, or for detection of impurity phases, as illustrated by surveying a number of case studies covering spin I = 1, 3/2, 5/2 and 7/2.  相似文献   

8.
The role of vinylidene groups, formed by the action of organic peroxides, on crosslinking reactions in isotactic polypropylene (iPP), is discussed. Grafting of polymerizable monomers on powdered iPP, performed below its melting temperature, occurs with high efficiency, depending on the structure of peroxide used.  相似文献   

9.
This paper is aiming to give a brief overview of recent research in the field of all‐solid‐state, internal solution free, ion‐selective electrodes and reference electrodes, employing conducting polymers or nano‐/microstructures as solid contacts beneath the polymeric, ion‐selective or reference membranes. The emphasis is on papers published in the last five years (after 2006). According to the papers published, poly(3‐octylthiophene) conducting polymer transducers offer highly reliable sensors for various applications, involving demanding analytical approaches and miniature sensors. On the other hand, the search for alternative materials continues: the sensors obtained by placing nano‐/microstructures (conducting polymers but also other materials, like, e.g., carbon nanotubes) underneath the receptor membrane are intensively tested. The recent years have also shown how useful the application of advanced instrumental methods is for the investigation of processes occurring within all‐solid‐state ion‐selective electrodes.  相似文献   

10.
Mushroom cultivation waste (MCW) is a polypropylene bag stuffed with wood flour and nutrients for growing mushroom, which is a feasible feedstock for anaerobic biohydrogen production owing to its abundant availability, high organic and nutrient content. This study optimized the seed inoculum from various waste sludges (sewage sludge, cow dung and pig slurry), nutrient addition and operation conditions (moisture content and MCW powder particle size) for maximal biohydrogen production by solid‐state fermentation (SSF). SSF batch test was operated at a MCW 3 g total volatile solid (TVS)/L, temperature 55 °C and rotation speed of 15 rpm with a vertical rotative shaker. The peak hydrogen production performance of hydrogen production rate (HPR) 9.50 mol H2/kg‐d and hydrogen yield (HY) 0.29 mmol H2/g TVS) are obtained using sewage sludge 2 seed inoculum, nutrients addition, moisture content 70 % and particle size of 1.190~0.590 mm. The results show that the MCW has the potential for hydrogen production by anaerobic mixed microflora using solid‐state fermentation. The bioenergy of 1842 kWh while using SSF to conver MCW to produce biohydrogen and it could reduce CO2 emission of 114–178 kg per year comparing using fossil fuel such as coal, fuel oil and natural gas.  相似文献   

11.
The neurosteroid trans‐dehydroandrosterone (DHEA) and its analogs with slightly different modifications in the side chain attached to C17, that is, (3S)‐acetoxypregn‐5‐en‐20‐one ( 1 ) and (3S,20R)‐acetoxypregn‐5‐en‐20‐ol ( 2 ), have been synthesized to investigate DHEA–cation interactions. In this study, we applied solid‐state 1H/13C cross‐polarization/magic‐angle spinning (CP/MAS) nuclear magnetic resonance (NMR) spectroscopy to a series of DHEA analog/Mg2+ mixtures at different Mg2+ concentrations. The high‐resolution 13C NMR spectra of 1 /Mg2+ mixtures exhibit two distinct 13C spectral patterns, one attributable to 1 free from Mg2+, and the other attributable to 1 with bound Mg2+. For 2 , the 13C NMR spectra exhibit three distinct spectral patterns; besides that of the free form, the other two can be assigned to Mg2+‐bound forms. Based on the analysis of the chemical shift deviations (CSDs), we conclude that both 1 and 2 might be subject to a cation–π interaction via the C5–C6 double bond, in contrast to that observed previously for DHEA. As demonstrated, DHEA possesses two Mg2+ binding sites, that is, C17–O and C5–C6 double bond, in which the binding affinity of the former is at least three times stronger than that of the latter. The solid‐state 13C NMR investigation allows better understanding of the underlying cation binding effects of neurosteroid molecules in vitro.  相似文献   

12.
The solid‐state properties of some polycation/azo dye complexes according to the dye structure were studied in this work. One polycation contained about 95 mol % N,N‐dimethyl‐2‐hydroxypropyleneammonium chloride units in the backbone (PCA5), and eight azo dyes, different in either the number of sulfonic groups or their distribution, were used as opposite components. The selected azo dyes were as Crystal Scarlet, Congo Red, Crocein Scarlet MOO, Ponceau SS, Amaranth, Ponceau S, Direct Blue 1, and Direct Red 80. Information on the compensation degree of the oppositely charges was obtained by the elemental analysis of the solid‐state polycation/dye complexes (the experimental contents of chlorine, nitrogen, and sulfur were compared with the calculated values). Differential scanning calorimetry was employed to probe the strength of the intermolecular interactions in the PCA5/dye complexes. Wide‐angle X‐ray diffraction was used to assess the supramolecular order of the solid‐state complexes. The physical properties of the PCA5/azo dye complexes (the complex stoichiometry, glass‐transition temperature, decomposition temperature, and degree of supramolecular order) were influenced mainly by the dye structure but also by the polycation concentration and the presence of NaCl. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 264–272, 2003  相似文献   

13.
Solid‐state NMR characterization of hybrid aluminosilicate xerogels, by 17O magic angle spinning (MAS) and triple quantum magic angle spinning (MQMAS) techniques, evidences Si—O—Si and Si—O—Al oxygen sites, spectrally separated in MQMAS experiments. Inversion of the MQMAS spectra allows the measurement of quadrupolar parameters, isotropic chemical shifts, distribution of chemical shift and discussion of the mobility of the structural units. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
The condensation polymerization of 4,4′‐oxydianiline with pyromellitic dianhydride for the formation of poly(amic acid) and the subsequent imidization for the formation of polyimides were investigated for films prepared with vapor‐deposition polymerization techniques. Fourier transform infrared spectroscopy, thermal analysis, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry of films at different temperatures indicated that additional solid‐state polymerization occurred before imidization. The experiments revealed that, upon vapor deposition, poly(amic acid) oligomers formed that had a number‐average molecular weight of about 1500 Da. Between 100–130 °C, these chains underwent an additional condensation reaction and formed slightly higher molecular weight oligomers. Calorimetry measurements showed that this reaction was exothermic [enthalpy of reaction (ΔH) ~ ?30 J/g] and had an activation energy of about 120 kJ/mol. The experimental ΔH values were compared with results from ab initio molecular modeling calculations to estimate the number of amide groups formed. At higher temperatures (150–300 °C), the imidization of amide linkages occurred as an endothermic reaction (ΔH ~ +120 J/g) with an activation energy of about 130 kJ/mol. The solid‐state kinetics depended on the reaction conversion as well as the processing conditions used to deposit the films. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5999–6010, 2004  相似文献   

15.
Paramagnetic metal ions deliver structural information both in EPR and solid‐state NMR experiments, offering a profitable synergetic approach to study bio‐macromolecules. We demonstrate the spectral consequences of Mg2+/ Mn2+ substitution and the resulting information contents for two different ATP:Mg2+‐fueled protein engines, a DnaB helicase from Helicobacter pylori active in the bacterial replisome, and the ABC transporter BmrA, a bacterial efflux pump. We show that, while EPR spectra report on metal binding and provide information on the geometry of the metal centers in the proteins, paramagnetic relaxation enhancements identified in the NMR spectra can be used to localize residues at the binding site. Protein engines are ubiquitous and the methods described herein should be applicable in a broad context.  相似文献   

16.
MAS‐NMR was used to study the structure and dynamics at ambient temperatures of the membrane‐anchor domain of YadA (YadA‐M) in a pellet of the outer membrane of E. coli in which it was expressed. YadA is an adhesin from the pathogen Yersinia enterocolitica that is involved in interactions with the host cell, and it is a model protein for studying the autotransport process. Existing assignments were sucessfully transferred to a large part of the YadA‐M protein in the E. coli lipid environment by using 13C‐13C DARR and PDSD spectra at different mixing times. The chemical shifts in most regions of YadA‐M are unchanged relative to those in microcrystalline YadA‐M preparations from which a structure has previously been solved, including the ASSA region that is proposed to be involved in transition‐state hairpin formation for transport of the soluble domain. Comparisons of the dynamics between the microcrystalline and membrane‐embedded samples indicate greater flexibility of the ASSA region in the outer‐membrane preparation at physiological temperatures. This study will pave the way towards MAS‐NMR structure determination of membrane proteins, and a better understanding of functionally important dynamic residues in native membrane environments.  相似文献   

17.
A number of 4‐arylpyridines, many methoxy substituted, were prepared by an efficient two‐step method involving aryl Grignard addition to 1‐methyl‐4‐piperidone and direct aromatization of the resulting 4‐aryl‐4‐piperidinols. The pyridines were N‐alkylated to give sulfonate salts desired for their fluorescent properties. Study of selected compounds as laser dyes revealed several structures to be efficient dyes lasing in the 530‐550 nm range. Two new diazaquaterphenyls were prepared and were quaternized. These salts exhibited intense fluorescence in the 420‐450 nm range, but would not lase. A phenolic azaterphenyl suitably substituted for excited state intramolecular proton transfer (ESIPT) did not fluoresce at all.  相似文献   

18.
19.
There is widespread interest in responsive polymers that show cloud point behavior, but little attention is paid to their solid state thermal properties. To manufacture products based on such polymers, it may be necessary to subject them to high temperatures; hence, it is important to investigate their thermal behavior. In this study, we characterized a family of poly(N‐isopropylacrylamide‐co‐hydroxymethylacrylamide) copolymers. Although poly(N‐isopropylacrylamide) shows very high thermal stability (up to 360 °C), introduction of hydroxy side chains leads to a significant reduction in stability and new degradation processes become apparent. Thermogravimetric analysis and fourier transform infrared spectroscopy (FT‐IR) indicate that the first degradation process involves a chemical dehydration step (110–240 °C), supported by the nonreversing heat flow response in modulated temperature differential scanning calorimetry. Water loss scales with the fraction of hydroxy monomer in the copolymer. Glass transition temperatures (Tg) are higher than the temperatures causing dehydration; hence, these values relate to newly‐formed copolymer structures produced by controlled heating under nitrogen. Fourier transform‐Raman (FT‐Raman) spectra suggest that this transition involves imine formation. The Tg increases as the fraction of hydroxy groups in the original copolymer increases. Further heating leads to degradation and mass loss, and more complex changes in the FT‐IR spectra, consistent with formation of unsaturated species. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

20.
Microtubule dynamics is a target for many chemotherapeutic drugs. In order to understand the biochemical effects of paclitaxel on the GTPase activity of tubulin, the status of guanine nucleotides in microtubules was investigated by 31P cross‐polarization magic angle spinning (CPMAS) NMR. Microtubules were freshly prepared in vitro in the presence of paclitaxel and then lyophilized in sucrose buffer for solid‐state NMR experiments. A 31P CPMAS NMR spectrum with the SNR of 25 was successfully acquired from the lyophilized microtubule sample. The broadness of the 31P spectral lines in the spectrum indicates that the molecular environments around the guanine nucleotides inside tubulin may not be as crystalline as reported by many diffraction studies. Deconvolution of the spectrum into four spectral components was carried out in comparison with the 31P NMR spectra obtained from five control samples. The spectral analysis suggested that about 13% of the nucleotides were present as GTP and 37% as GDP in the β‐tubulin (E‐site) of the microtubules. It was found that most of the GDPs were present as GDP‐Pi complex in the microtubules, which seems to be one of the effects of paclitaxel binding. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号