首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystallographically observed molecular structure of the title compound, C19H17NO, and its inverted counterpart are compared with that calculated by density functional theory (DFT) at the B3LYP/6‐311++G(d,p) level. The results from both methods suggest that the observed molecular conformation of the title compound is primarily determined by intermolecular interactions in the crystal structure. The periodic organization of the molecules is stabilized by weak C—H...O and C—H...π hydrogen bonds and thus a two‐dimensional puckered network consisting of R44(22) and R44(38) ring motifs is established. The title molecule has a (+)‐antiperiplanar conformation about the C—C bond in the aminoacetone bridge. The pyramidal geometry observed around the vertex N atom is flattened by the presence of bulky phenyl and naphthylethanone fragments.  相似文献   

2.
Molecules of the title compound, C12H13NO3, are not planar and are stabilized by electrostatic interactions, as the dipole moment of the molecule is 3.76 D. They are also stabilized by intramolecular hydrogen bonds of N...O and C...O types, and by a complicated network of weak intermolecular hydrogen bonds of the C...O type. This paper also reports the theoretical investigation of the hydrogen bonding and electronic structure of the title compound using natural bond orbital (NBO) analysis.  相似文献   

3.
In the crystal structure of the title compound, C11H13NO2, there are strong inter­molecular O—H⋯N hydrogen bonds which, together with weak intra­molecular C—H⋯O hydrogen bonds, lead to the formation of infinite chains of mol­ecules, held together by weak inter­molecular C—H⋯O hydrogen bonds. A theoretical investigation of the hydrogen bonding, based on density functional theory (DFT) employing periodic boundary conditions, is in agreement with the experimental data. The cluster approach shows that the influence of the crystal field and of hydrogen‐bond formation are responsible for the deformation of the 2‐oxazoline ring, which is not planar and adopts a 4T3 (C3TC2) conformation.  相似文献   

4.
The title compound, C12H12FNO3, a potential precursor for fluoroquinoline synthesis, is essentially planar, with the most outlying atoms displaced from the best‐plane fit through all non‐H atoms by 0.163 (2) and 0.118 (2) Å. Molecules are arranged in layers oriented parallel to the (011) plane. The arrangement of the molecules in the structure is controlled mainly by electrostatic interactions, as the dipole moment of the molecule is 5.2 D. In addition, the molecules are linked by a weak C—H...O hydrogen bond which gives rise to chains with the base vector [1,1,1]. Electron transfer within the molecule is analysed using natural bond orbital (NBO) analysis. Deviations from the ideal molecular geometry are explained by the concept of non‐equivalent hybrid orbitals.  相似文献   

5.
In the crystal structure of the title compound, C9H9NO3, there are strong intra­molecular O—H⋯N and inter­molecular O—H⋯O hydrogen bonds which, together with weak inter­molecular C—H⋯O hydrogen bonds, lead to the formation of infinite chains of mol­ecules. The calculated inter­molecular hydrogen‐bond energies are −11.3 and −2.7 kJ mol−1, respectively, showing the dominant role of the O—H⋯O hydrogen bonding. A natural bond orbital analysis revealed the electron contribution of the lone pairs of the oxazoline N and O atoms, and of the two hydr­oxy O atoms, to the order of the relevant bonds.  相似文献   

6.
Crystals of the title racemic compound, C11H13NO2, consist of two types of mol­ecules (conformers); one mol­ecule has an exocyclic OH group in an equatorial position and the other has this group in an axial position. Consequently, the hydrogen‐bond schemes for the two mol­ecules are different. The mol­ecules with equatorial OH groups create infinite parallel chains (formed by the same enantio­mer), connected by centrosymmetric dimers of mol­ecules (of mixed enantio­mers), both with axial OH groups. Possible inter­conversion of the conformers and the flexibility of the mol­ecule were studied by means of different MP2 and density functional theory (DFT) methods. The optimization of the structure by the DFT method confirmed the types of the hydrogen bonds.  相似文献   

7.
The title compound, [Cu(C10H9N2O)2] or [CuII(CYMB)2], (I), was obtained in an attempt to reduce trans‐bis(2‐{[3,5‐bis(trifluoromethyl)phenyl]iminomethyl}phenolato)copper(II), [Cu(TIMB)2], (II), with bis(pentamethylcyclopentadienyl)cobalt(II) [decamethylcobaltocene, Cp*2Co, (III)]. The molecular structure of (I) has the CuII centre located on an inversion centre of the C2/c space group. A density functional theory (DFT) analysis at the B3LYP/Lanl2dz(CuF);6‐31G**(CHNO) level performed in order to optimize the structures of the free ligands CYMB and TIMB, and the metal complexes [CuI/II(CYMB)2]−/0 and [CuI/II(TIMB)2]−/0, reproduced well the X‐ray diffraction structure and allowed us to infer the insertion of the cyanomethide anion on the 3,5‐bis(trifluoromethyl)phenyl system from an evaluation of the Mulliken atomic charges and the electronic energies.  相似文献   

8.
In the crystal structure of the title compound, C23H22BrN3, a strong conjugation of the pyrazoline chromophore with the aromatic rings at positions 1 and 3 is observed, as well as a significant shift in the synclinal→synperiplanar direction. The absolute structure was unequivocally determined. In the absence of clasical hydrogen‐bond donors, the structure is stabilized by weak C—H...π interactions. This paper also reports the electronic structure of the title compound using NBO (natural bond order) analysis. The contributions of lone pairs to the relevant bonds were revealed.  相似文献   

9.
The structure of γ‐alumina (Al21+1/32+2/3O32) crystals obtained as a product of a corrosion reaction between β‐sialon and steel was refined in the space group Fdm. The oxygen sublattice is fully occupied. The refined occupancy parameters are 0.83 (3), 0.818 (13), 0.066 (14) and 0.044 (18) for Al ions in 8a, 16d, 16c and 48f positions, respectively. The Al ions are distributed over octa­hedral and tetra­hedral sites in a 63:37 ratio, with 6% of all Al ions occupying non‐spinel positions.  相似文献   

10.
In the title compound, C11H21N2O5P, one of the two carbazate N atoms is involved in the C=N double bond and the H atom of the second N atom is engaged in an intramolecular hydrogen bond with an O atom from the dimethylphosphorin‐2‐yl group, which is in an uncommon cis position with respect to the carbamate group. The cohesion of the crystal structure is also reinforced by weak intermolecular hydrogen bonds. Density functional theory (DFT) calculations at the B3LYP/6‐311++g(2d,2p) level revealed the lowest energy structure to have a Z configuration at the C=N bond, which is consistent with the configuration found in the X‐ray crystal structure, as well as a less stable E counterpart which lies 2.0 kcal mol−1 higher in potential energy. Correlations between the experimental and computational studies are discussed.  相似文献   

11.
The crystal structure of the title compound, C16H19N3, comprises neutral molecules of a dipolar Schiff base chromophore. A density functional theory (DFT) optimized structure at the B3LYP/6‐31G(d) level is compared with the molecular structure in the solid state. The compound crystallizes in the noncentrosymmetric space group Pna21 with a herring‐bone packing motif and is therefore a potential candidate for nonlinear optical effects in the bulk.  相似文献   

12.
The molecule of the title compound (systematic name: 6‐chloroindolin‐2‐one), C8H6ClNO, is almost planar, with a dihedral angle of 1.13 (9)° between the planes of the constituent pyrrolidine and benzene rings. Centrosymmetric dimers are formed in the crystal structure by N—H...O hydrogen bonds, and these dimers are additionally linked by Cl...Cl and C—H...O interactions. Density functional theory (DFT) calculations at the B3LYP/6‐31 G(d,p) level of theory were used to optimize the molecular structure and the geometry was best reproduced by optimization of two interacting molecules. The bond orders in the molecule, estimated using the natural bond orbitals (NBO) formalism, are consistent with the observed bond lengths. In particular, the contribution of the lone pair of electrons on the N atom to the N—C bond in the N—C=O group is revealed. The measured IR spectrum of the compound shows a red shift of the N—H stretching frequency compared with the free molecule, due to the formation of the hydrogen bonds.  相似文献   

13.
The Schiff base enaminones (3Z)‐4‐(5‐ethylsulfonyl‐2‐hydroxyanilino)pent‐3‐en‐2‐one, C13H17NO4S, (I), and (3Z)‐4‐(5‐tert‐butyl‐2‐hydroxyanilino)pent‐3‐en‐2‐one, C15H21NO2, (II), were studied by X‐ray crystallography and density functional theory (DFT). Although the keto tautomer of these compounds is dominant, the O=C—C=C—N bond lengths are consistent with some electron delocalization and partial enol character. Both (I) and (II) are nonplanar, with the amino–phenol group canted relative to the rest of the molecule; the twist about the N(enamine)—C(aryl) bond leads to dihedral angles of 40.5 (2) and −116.7 (1)° for (I) and (II), respectively. Compound (I) has a bifurcated intramolecular hydrogen bond between the N—H group and the flanking carbonyl and hydroxy O atoms, as well as an intermolecular hydrogen bond, leading to an infinite one‐dimensional hydrogen‐bonded chain. Compound (II) has one intramolecular hydrogen bond and one intermolecular C=O...H—O hydrogen bond, and consequently also forms a one‐dimensional hydrogen‐bonded chain. The DFT‐calculated structures [in vacuo, B3LYP/6‐311G(d,p) level] for the keto tautomers compare favourably with the X‐ray crystal structures of (I) and (II), confirming the dominance of the keto tautomer. The simulations indicate that the keto tautomers are 20.55 and 18.86 kJ mol−1 lower in energy than the enol tautomers for (I) and (II), respectively.  相似文献   

14.
The detailed mechanisms of the Lewis acid‐catalyzed transesterification of β‐oxodithioesters at a solvent‐free condition were studied using density functional theory. Five possible reaction pathways, including one noncatalyzed (channel 1) and four Lewis acid‐catalyzed channels (SnCl2‐catalyzed channels 2 and 3 and SnCl2·2H2O‐catalyzed channels 4 and 5), were investigated. Our calculated results indicate that the energy barriers of the catalyzed channels are significantly lower than that of channel 1. Channel 5, which has an energy barrier of 33.70 kcal/mol as calculated at the B3LYP/[6‐31G(d, p)+LANL2DZ] level, is the most energy‐favorable channel. Moreover, one water molecule of SnCl2·2H2O participated in the transesterification in channel 5. Thus, we report a novel function of the SnCl2·2H2O catalyst, which is quite different from the function of the conventional nonhydrated Lewis acid SnCl2. To understand the function of these two Lewis acid catalysts better, the global reactivity indexes and natural bond orbital charge were analyzed. This work helps in understanding the function of the Lewis acid in transesterification, and it can provide valuable insight for the rational design of new Lewis acid catalysts. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
The interaction and the durability to laundering of a cationic β‐cyclodextrin derivative applied to Tencel were examined by x‐ray photoelectron spectroscopy (XPS). The N1(s) XPS spectra of the cationic β‐cyclodextrin treated substrates revealed the presence of the applied finish on the fibre surface and that the durability of the applied finish to hand‐wash was good. However, the cationic β‐cyclodextrin derivative showed poor durability to the ISO CO6/C2S wash protocol. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Tetrahedrally coordinated oxides usually present polymorphism, but for NaGaO2, only the β polymorph has been reported. In this work, the synthesis and structural characterization of γ‐sodium gallate, γ‐NaGaO2, are presented. The crystal structure belongs to the orthorhombic system, space group Pbca (No. 61), and has been characterized by a Rietveld refinement of the X‐ray powder diffraction pattern. The structure is similar to those exhibited by the γ phases of many tetrahedral oxides.  相似文献   

17.
As a continuation of the investigation on 1,2-migration of metal carbene and free carbene, two X-ray structures of β-substituted α-diazocarbonyl compounds were obtained. The relationship between the structure and 1,2-migratory aptitude was discussed and an exploratory photochemical study of the diazo compounds presented.  相似文献   

18.
8‐Bromoadenine was benzylated in the presence of base to give a mixture of two regioisomers. One was easily recognized as 9‐benzyl‐8‐bromoadenine, but the other structure could not be determined with absolute certainty by NMR. Therefore, X‐ray crystallography was used to prove that the benzyl group was attached to N‐3. Furthermore, it is shown that the 3‐benzyl adenine derivative exists as the amine tautomer both in the crystalline state as well as in solution (DMSO‐d6), with restricted rotation around the N6? C6 bond. J. Heterocyclic Chem., (2011).  相似文献   

19.
The intramolecular hydrogen bond, molecular structure, and vibrational frequencies of α‐chloro acetylacetone have been investigated. Fourier transform infrared and Fourier transform Raman spectra of this compound and its deuterated analogue were recorded in the regions 400–4,000 cm?1 and 50–4,000 cm?1, respectively. Rigorous normal coordinate analysis has been performed at the B3LYP/6‐311++G** level of theory for purposes of comparison. The complete vibrational assignment for TFAA has been made on the basis of the calculated potential energy distribution. We also applied the atoms in molecules theory and natural bond orbital method for the analysis of the hydrogen bond in α‐Chloro acetylacetone and acetylacetone. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

20.
The title compound, C11H16O2, adopts a semifolded conformation with the δ‐lactone and cyclo­hexane rings almost perpendicular to one another. The β‐methyl substituent occupies an axial position with respect to the cyclo­hexane ring. The δ‐lactone moiety adopts a slightly distorted half‐chair arrangement, while the cyclo­hexane ring exists in an almost ideal chair conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号