首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In two linkage isomers, bis[1,3‐di­methyl‐2,4,6(1H,3H,5H)‐pyrimidine­trionato]‐C5,O4‐(ethyl­enedi­amine‐N,N′)platinum(II), [Pt(C6H7N2O3)2(C2H8N2)], (I), and bis[1,3‐di­methyl‐2,4,6(1H,3H,5H)‐py­rim­idine­tri­on­ato‐C5](ethyl­enediamine‐N,N′)­plati­num(II) di­hyd­rate, [Pt(C6H7N2O3)2(C2H8N2)]·2H2O, (II), crystal­lized from the same aqueous solution containing [Pt(en)(OH)2] and 1,3‐di­methyl­barbituric acid (Hdmbarb) in a 1:2 molar ratio, a pair of monodentate dmbarb? anions coordinate to the Pt atom at tetrahedral C atoms for (II), while one dmbarb? anion coordinates at the carbon and the other at a deprotonated enol oxy­gen for (I). The Pt—C distances in (I) and (II) are comparable: 2.112 (4) Å for (I), and 2.114 (4) and 2.117 (4) Å for (II).  相似文献   

2.
The structures of a series of four‐coordinate nickel(II) complexes of the form [Ni(sacsac)L] PF6 (sacsac = pentane‐2,4‐di­thione anion; L = (Ph2P)2(CH2)n, n = 1,2,3) have beendetermined. These are [bis­(di­phenyl­phosphino)­methane](pentane‐2,4‐di­thionato‐S,S′)­nickel(II) hexa­fluoro­phosphate, [Ni(C25H22P2)(C5H7S2)]PF6, [1,2‐bis­(di­phenylphosphino)­ethane](pentane‐2,4‐di­thionato–S,S′)­nickel(II) hexa­fluoro­phosphate, [Ni(C26H24P2)(C5H7S2)]PF6, and [1,3‐bis­(di­phenyl­phosphino)­propane](pentane‐2,4‐di­thionato‐S,S′)­nickel(II) hexa­fluoro­phosphate, [Ni(C27H26P2)(C5H7S2)]PF6. All have a distorted square‐planar arrangement about Ni with angles around Ni varying with the length of the hydro­carbon chain.  相似文献   

3.
The chloro­form solvate of uncarine C (pteropodine), (1′S,3R,4′aS,5′aS,10′aS)‐1,2,5′,5′a,7′,8′,10′,10′a‐octa­hydro‐1′‐methyl‐2‐oxospiro­[3H‐indole‐3,6′(4′aH)‐[1H]­pyrano­[3,4‐f]indolizine]‐4′‐carboxyl­ic acid methyl ester, C21H24N2O4·CHCl3, has an absolute configuration with the spiro C atom in the R configuration. Its epimer at the spiro C atom, uncarine E (isopteropodine), (1′S,3S,4′aS,5′aS,10′aS)‐1,2,5′,5′a,7′,8′,10′,10′a‐octahydro‐1′‐methyl‐2‐oxospiro[3H‐indole‐3,6′(4′aH)‐[1H]pyrano[3,4‐f]indolizine]‐4′‐carboxylic acid methyl ester, C21H24N2O4, has Z′ = 3, with no solvent. Both form intermolecular hydrogen bonds involving only the ox­indole, with N?O distances in the range 2.759 (4)–2.894 (5) Å.  相似文献   

4.
The title diastereoisomers, methyl 5‐(S)‐[2‐(S)‐methoxy­carbonyl)‐2,3,4,5‐tetra­hydro­pyrrol‐1‐yl­carbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate and methyl 5‐(S)‐[2‐(R)‐methoxycarbonyl)‐2,3,4,5‐tetrahydropyrrol‐1‐ylcarbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxylate, both C19H23N3O5, have been studied in two crystalline forms. The first form, methyl 5‐(S)‐[2‐(S)‐methoxy­carbonyl)‐2,3,4,5‐tetrahydropyrrol‐1‐ylcarbonyl]‐1‐(4‐methylphenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate–methyl 5‐(S)‐[2‐(R)‐methoxy­carbonyl)‐2,3,4,5‐tetra­hydro­pyrrol‐1‐yl­carbonyl]‐1‐(4‐methylphenyl)‐4,5‐dihydropyrazole‐3‐carboxylate (1/1), 2(S),5(S)‐C19H23N3O5·2(R),5(S)‐C19H23N3O5, contains both S,S and S,R isomers, while the second, methyl 5‐(S)‐[2‐(S)‐methoxycarbonyl)‐2,3,4,5‐tetrahydro­pyrrol‐1‐ylcarbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate, 2(S),5(S)‐C19H23N3O5, is the pure S,S isomer. The S,S isomers in the two structures show very similar geometries, the maximum difference being about 15° on one torsion angle. The differences between the S,S and S,R isomers, apart from those due to the inversion of one chiral centre, are more remarkable, and are partially due to a possible rotational disorder of the 2‐­(methoxycarbonyl)tetrahydropyrrole group.  相似文献   

5.
The crystal structures of 1‐{5‐[4,6‐bis­(methyl­sulfanyl)‐2H‐py­razolo­[3,4‐d]­pyrimidin‐2‐yl]­pentyl}‐6‐methyl­sulfanyl‐4‐(pyr­rolidin‐1‐yl)‐1H‐pyrazolo­[3,4‐d]­pyrimidine, C22H29N9S3, and 6‐methyl­sulfanyl‐1‐{5‐[6‐methyl­sulfanyl‐4‐(pyrrolidin‐1‐yl)‐2H‐pyrazolo­[3,4‐d]­pyrimidin‐2‐yl]­pentyl}‐4‐(pyrrolidin‐1‐yl)‐1H‐pyrazolo­[3,4‐d]­pyrimidine, C25H34N10S2, which differ in having either a pyrrolidine substituent or a methylsulfanyl group, show intermolecular stacking due to aromatic π–π interactions between the pyrazolo­[3,4‐d]­pyrimidine rings.  相似文献   

6.
Neutral 8‐(5‐iodo‐n‐pentyl)‐3‐(η5‐penta­methyl­cyclo­pentadi­enyl)‐arachno‐3‐rhoda‐7,8‐di­thia­undecaborane, [Rh(C5H19B8­IS2)­(C10H15)], obtained from the [arachno‐7,8‐S2B9H10]? anion by treatment with I(CH2)5I followed by [Rh(C5Me5)Cl2]2 and N,N,N′,N′‐tetra­methyl‐1,8‐di­amino­naphthalene, has the 11‐vertex cluster geometry of [arachno‐7,8‐S2B9H10]?, but with an {Rh(C5Me5)} unit in the 3‐position instead of a {BH} unit, and with a –(CH2)5I chain attached exo to an S atom.  相似文献   

7.
The supramolecular structures of the title compounds, 2‐phenyl‐5‐p‐tolyl‐1,5,6,10b‐tetra­hydro­pyrazolo­[1,5‐c]quinazoline, C23H21N3, (I), 5‐(4‐bromo­phenyl)‐2‐phenyl‐1,5,6,10b‐tetra­hydro­pyrazolo­[1,5‐c]­quinazoline, C22H18BrN3, (II), 2‐(4‐chlorophenyl)‐5‐phenyl‐1,5,6,10b‐tetrahydropyrazolo[1,5‐c]quinazoline, C22H18ClN3, (III), and 5‐(4‐bromo­phenyl)‐2‐(4‐chlorophenyl)‐1,5,6,10b‐tetrahydropyrazolo[1,5‐c]quinazoline, C22H17BrClN3, (IV), are of two general types. Compounds (I), (II) and (III) form base‐paired dimers via N—H?N hydrogen bonds, where (I) and (II) are isomorphous, while in (IV), there are no conventional hydrogen bonds.  相似文献   

8.
In the crystal structure of the title compound, [N,N′‐bis(3‐­amino­propyl)­ethyl­enedi­amine‐κ4N,N′,N′′,N′′′][1,3,5‐triazine‐2,4,6(1H,3H,5H)‐tri­thionato(2−)‐κ2N,S]­zinc(II) ethanol sol­vate, [Zn(C8H22N4)2(C3HN3S3)]·C2H6O, the ZnII atom is octa­hedrally coordinated by four N atoms [Zn—N = 2.104 (2)–2.203 (2) Å] of a tetradentate N‐donor N,N′‐bis(3‐­amino­propyl)­ethyl­enedi­amine (bapen) ligand and by two S and N atoms [Zn—S = 2.5700 (7) Å and Zn—N = 2.313 (2) Å] of a tri­thio­cyanurate(2−) (ttcH2−) dianion bonded as a bidentate ligand in a cis configuration. The crystal structure of the compound is stabilized by a network of hydrogen bonds.  相似文献   

9.
The title compound, methyl (2aS,3R,5R,5aS,6S,6aS,8R,9aS,10aR,10bR,10cS)‐8‐(3‐furyl)‐2a,4,5,5a,6,6a,8,9,9a,10a,10b,10c‐dodeca­hydro‐3‐hydroxy‐2a,5a,6a,7‐tetra­methyl‐5‐(3‐methylbut‐2‐enoyl­oxy)‐2H,3H‐cyclo­penta­[4′,5′]­furo­[2′,3′:6,5]benzo[cd]­isobenzo­furan‐6‐acetate, C32H42O8, was isolated from uncrushed green leaves of Azadirachta indica A. Juss (neem) and has been found to possess antifeedant activity against Spodptera litura. The conformations of the functional groups are similar to those of 3‐des­acetyl­salannin, which was isolated from neem kernels. The mol­ecules are linked into chains by intermolecular O—H?O hydrogen bonds.  相似文献   

10.
The title compounds, (2S)‐N‐[5‐(4‐chloro­phenyl)‐2,3‐di­hydro‐6H‐1,3,4‐thia­diazin‐2‐yl­idene]‐2‐[(phenyl­sulfonyl)­amino]­pro­pan­amide, C18H17ClN4O3S2, (I), (2R)‐N‐[5‐(4‐fluoro­phenyl)‐6H‐1,3,4‐thia­diazin‐2‐yl]‐2‐[(phenyl­sulfonyl)amino]­propan­amide, C18H17FN4O3S2, (II), and (2S)‐N‐[5‐(5‐chloro‐2‐thienyl)‐6H‐1,3,4‐thia­diazin‐2‐yl]‐2‐[(phenyl­sulfonyl)­amino]­propan­amide, C16H15ClN4O3S3, (III), are potent inhibitors of matrix metalloproteinases. In all three compounds, the thia­diazine ring adopts a screw‐boat conformation. The mol­ecules of compound (I) show a short intramolecular NAla—H?Nexo hydrogen bond [N?N 2.661 (3) Å] and are linked into a chain along the c axis by Nendo—H?Sendo and Nendo—H?OAla hydrogen bonds [N?S 3.236 (3) and N?O 3.375 (3) Å] between neighbouring mol­ecules. In compound (II), the mol­ecules are connected antiparallel into a chain along the a axis by Nexo—H?OAla and NAla—H?Nendo hydrogen bonds [N?O 2.907 (6) and N?N 2.911 (6) Å]. The mol­ecules of compound (III) are dimerized antiparallel through Nexo—H?Nendo hydrogen bonds [N?N 2.956 (7) and 2.983 (7) Å]. The different hydrogen‐bonding patterns can be explained by an amido–imino tautomerism (prototropic shift) shown by different bond lengths within the 6H‐1,3,4‐thia­diazine moiety.  相似文献   

11.
The synthesis and characterization of a new unsymmetrical dinucleating N,O‐donor ligand, 2‐[N,N‐bis­(2‐pyridyl­methyl)­amino­methyl]‐6‐[N‐(3,5‐di‐tert‐butyl‐2‐oxidobenzyl)‐N‐(2‐pyridyl­amino)­aminomethyl]‐4‐methyl­phenol (H2Ldtb), as well as the X‐ray crystal structure of its corresponding mixed‐valence diacetate‐bridged manganese complex, di‐μ‐acetato‐μ‐{2‐[N,N‐bis­(2‐pyridylmethyl)amino­methyl]‐6‐[N‐(3,5‐di‐tert‐butyl‐2‐oxidobenzyl)‐N‐(2‐pyridyl­amino)­aminomethyl]‐4‐methylphenolato}dimanganese(II,III) tetra­phenyl­borate, [MnIIMnIII(C42H49N5O2)(C2H3O2)2](C24H20B), are reported. The complex may be regarded as an inter­esting structural model for the mixed‐valence MnII–MnIII state of manganese catalase.  相似文献   

12.
In the crystal structures of 4,6‐di­methyl­thio‐1‐[3‐(4,6‐di­methyl­thio‐2H‐pyra­zolo­[3,4‐d]­py­rimi­din‐2‐yl)­propyl]‐1H‐py­ra­­zolo­[3,4‐d]­py­rimi­dine, C17H20N8S4, and 1‐[4‐(4‐meth­oxy‐6‐methyl­thio‐1H‐pyra­zolo­[3,4‐d]py­rimi­din‐1‐yl)­butyl]‐5‐meth­yl‐6‐methyl­thio‐4,5‐di­hydro‐1H‐pyra­zolo­[3,4‐d]py­rimi­din‐4‐one, C18H22N8O2S2, only intermolecular stacking due to aromatic π–π interactions between pyrazolo­[3,4‐d]­pyrimidinerings is present.  相似文献   

13.
The structures of two conformationally restricted 4,5‐di­hydroxy­norvaline analogues with a norbornane skeleton, namely methyl (1S,2S,3R,4R)‐2‐benz­amido‐3‐(1,2‐di­hydroxy­ethyl)­bi­cyclo[2.2.1]­heptane‐2‐carboxyl­ate, C18H23NO5, and methyl (1R,2S,3R,4S)‐2‐benz­amido‐3‐(1,2‐di­hydroxy­ethyl)­bi­cyclo[2.2.1]­heptane‐2‐carboxyl­ate, C18H23NO5, exhibit a conformation in the helical region of the ?,ψ map but their handedness is opposite. In both cases, the torsion angles (χ1,1) giving the relative orientation of the 1,2‐di­hydroxy­ethyl group of the amino acid side chain and the benz­amide group of the peptide chain indicate that these groups adopt a nearly eclipsed conformation. Both compounds show a complex hydrogen‐bonding pattern.  相似文献   

14.
The absolute configurations of three new enanti­omerically pure ferrocenylphosphole compounds, namely (2S,4S,SFc)‐4‐methoxy­methyl‐2‐[2‐(9‐thioxo‐9λ5‐phosphafluoren‐9‐yl)­ferro­cenyl]‐1,3‐dioxane, [Fe(C5H5)(C23H22O3PS)], (III), (SFc)‐[2‐(9‐thioxo‐9λ5‐phosphafluoren‐9‐yl)ferrocenyl]methanol, [Fe(C5H5)(C18H14OPS)], (V), and (SFc)‐diphenyl[2‐(9‐thioxo‐9λ5‐phosphafluoren‐9‐yl]ferrocenylmethyl]phosphine, [Fe(C5H5)(C30H23P2)], (VIII), have been unambiguously established. All three ligands contain a planar chiral ferrocene group, bearing a dibenzo­phos­phole and either a dioxane, a methanol or a diphenyl­phosphino­methane group on the same cyclopentadienyl. In compound (V), the occurrence of O—H⋯S and C—H⋯S hydrogen bonds results in the formation of a two‐dimensional network parallel to (001). The geometry of the ferrocene frameworks agrees with related reported structures.  相似文献   

15.
Results of single‐crystal X‐ray experiments performed for the title compounds, (1S,2R,3S,4R,5R)‐4‐benzyl­oxy‐2‐[1‐(benzyl­oxy)­allyl]‐5‐hydroxy­methyl‐2,3,4,5‐tetra­hydro­furan‐3‐ol, C22H26O5, (I), and (3R,5S,6S,7S,8S)‐3,6‐bis­(benzyl­oxy)‐5‐iodo­methyl‐2,3,4,5‐tetra­hydro­furo­[3,2‐b]­furan‐2‐one, C21H21IO5, (II), demonstrate that the tetra­hydro­furan ring that is common to both structures adopts a different conformation in each mol­ecule. Structural analyses of (I) and (II), which were prepared from the same precursor, indicate that their different conformations are caused by hydrogen‐bonding interactions in the case of (I) and the presence of a fused bicyclic ring system in the case of (II). Density functional theory calculations on simplified analogs of (I) and (II) are also presented.  相似文献   

16.
Molecules of di­phenyl(2‐thio­xo‐1,3‐di­thiole‐4,5‐di­thiol­ato‐S,S′)­plumbane, [Pb(C3S5)(C6H5)2], are linked into sheets via two intermolecular Pb?Sthione interactions of 3.322 (4) and 3.827 (4) Å; the Pb centre has a distorted octahedral geometry. In contrast, mol­ecules of ­di­phenyl(2‐thio­xo‐1,3‐di­thiole‐4,5‐di­thiol­ato‐S,S′)­stannane, [Sn(C3S5)(C6H5)2], are linked into chains via a single intermolecular Sn—Sthione interaction of 2.8174 (9) Å; the Sn centre has a distorted trigonal‐bipy­ramidal geometry.  相似文献   

17.
The structure of (11,12,24,25‐tetra­hydro‐28,34‐di­methoxy‐3,6,16,19,31,37‐hexa­methyl‐1,21[1′,3′]:8,14[1′′,3′′]‐di­benzeno‐10H,23H‐tetrabenzo­[f,h,o,z][1,5,10,14]­tetraoxa­cyclo­octa­decane)­lithium chloride monohydrate, anti‐[Li(C50H48O6)]Cl·H2O, at 100 K reveals that the host is less strained than that of the syn‐bridged isomer. There are two independent complex cations, each lying on a center of symmetry. Four short [1.944 (2)–1.998 (2) Å] and two long [2.381 (2) and 2.455 (2) Å] Li+?O distances provide six‐coordination in a distorted octahedral environment.  相似文献   

18.
The title compounds, trans‐dichloro­bis[(1R,2R,3R,5S)‐(−)‐2,6,6‐trimethyl­bicyclo­[3.1.1]heptan‐3‐amine]palladium(II), [PdCl2(C10H19N)2], and trans‐dichloro­bis[(1S,2S,3S,5R)‐(+)‐2,6,6‐trimethyl­bicyclo­[3.1.1]heptan‐3‐amine]palladium(II) hemihydrate, [PdCl2(C10H19N)2]·0.5H2O, present different arrangements of the amine ligands coordinated to PdII, viz. antiperiplanar in the former case and (−)anticlinal in the latter. The hemihydrate is an inclusion compound, with a Pd coordination complex and disordered water mol­ecules residing on crystallographic twofold axes. The crystal structure for the hemihydrate includes a short Pd⋯Pd separation of 3.4133 (13) Å.  相似文献   

19.
In trans‐bis(5‐n‐butyl­pyridine‐2‐carboxyl­ato‐κ2N,O)­bis­(methanol‐κO)copper(II), [Cu(C10H12NO2)2(CH4O)2], the Cu atom lies on a centre of symmetry and has a distorted octahedral coordination. The Cu—O(methanol) bond length in the axial direction is 2.596 (3) Å, which is much longer than the Cu—­O(carboxylate) and Cu—N distances in the equatorial plane [1.952 (2) and 1.977 (2) Å, respectively]. In mer‐tris(5‐n‐bu­tyl­pyridine‐2‐carboxyl­ato‐κ2N,O)­iron(III), [Fe(C10H12NO2)3], the Fe atom also has a distorted octahedral geometry, with Fe—O and Fe—N bond‐length ranges of 1.949 (4)–1.970 (4) and 2.116 (5)–2.161 (5) Å, respectively. Both crystals are stabilized by stacking interactions of the 5‐n‐butyl­pyridine‐2‐carboxyl­ate ligand, although hydrogen bonds also contribute to the stabilization of the copper(II) complex.  相似文献   

20.
The crystal structure of 5‐fluoro‐1‐octanoyl­uracil [5‐fluoro‐1‐octanoyl­pyrimidine‐2,4(1H,3H)‐dione, C12H17FN2O3], a lipophilic prodrug of 5‐fluoro­uracil, is described. The 5‐fluoro­pyrimidine‐2,4(1H,3H)‐dione moiety is similar to the known structure of 1‐acetyl‐5‐fluoro­uracil. The 1‐octanoyl group and the 5‐fluoro­uracil moiety are essentially coplanar, with the octanoyl carbonyl group oriented towards the the ring C—H group and away from the nearer ring carbonyl group. The torsion angle C—N—C—O (from the ring CH group to the octanoyl carbonyl group) of 9.2 (2)° is similar to the corresponding torsion angles reported for 1‐acetyl‐5‐fluoro­uracil (17.3 and 1.6°) and 1,3‐di­acetyl‐5‐fluoro­uracil (8.8°).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号