首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
建立了分散固相萃取-分散液液微萃取与气相色谱/质谱联用测定玉米和大米中痕量氟虫腈及其代谢物残留的分析方法。使用乙腈和水混合溶液作为萃取溶剂,盐析后,提取液经N-丙基-乙二胺硅烷固相萃取材料(PSA)作为吸附剂后,采用分散液液微萃取步骤将目标物从到微量四氯乙烯中。对影响分散液液微萃取效率的因素,包括萃取溶剂种类及体积、盐等条件进行了优化。在0.02~1μg/m L浓度范围内,线性关系良好(r≥0.9987)。在玉米和大米样品中氟虫腈添加浓度为1.0~25.0μg/g时,平均回收率在70.4%~95.1%之间,相对标准偏差(n=5)在2.6%~12%之间,以最低添加浓度1μg/kg作为定量限。  相似文献   

2.
采用低温液液萃取技术,对鲜枣中的氟虫腈及其代谢物残留进行提取和净化,并利用超高效液相色谱-串联质谱法(UPLC-MS/MS)进行定性和定量分析。鲜枣样品以乙腈作为提取溶剂,-25℃低温液液萃取后,直接进样分析,采用负离子多反应监测(MRM)模式,外标法定量。结果表明,在优化条件下,氟虫腈及其代谢物在0.02~10μg/L范围内线性关系良好,相关系数(r2)大于0.999,检出限为0.005~0.02μg/kg,在不同加标浓度下的平均回收率为78.5%~95.8%,相对标准偏差(RSD)为3.4%~6.9%。该方法快速、简便、灵敏,适用于鲜枣中氟虫腈及其代谢物的快速测定。  相似文献   

3.
建立了分散液液微萃取-高效液相色谱法测定水样中氨苯磺胺、磺胺嘧啶,磺胺二甲基嘧啶3种磺胺药物残留的检测方法。对萃取剂、分散剂的种类和体积、pH、盐浓度等影响萃取效率的因素进行了优化。在最优的萃取条件下,3种抗菌药的测定线性范围为1~1000μg/L,r≥0.9997,检出限为0.07~0.25μg/L(S/N=3)。应用于5种不同水样中磺胺类抗菌药残留的分析,目标分析物的加标回收率在82.0%~104.0%之间,相对标准偏差小于5.9%。  相似文献   

4.
建立了液-液-液微萃取/高效液相色谱联用(LLLME/HPLC)测定环境水中痕量酚类化合物2-甲基苯酚、2-硝基苯酚、2,4-二氯苯酚的分析方法,研究了有机相溶剂种类及其体积、料液相pH值与离子强度、接受相的体积、组成及浓度和搅拌速率、萃取时间等因素对分析物萃取效率的影响。实验结果表明,该方法对酚类化合物的富集倍数可达到404~747倍,方法的线性范围为0.2~300μg/L,RSD(n=6)为6.8%~11.4%。测定加标自来水、江水以及生活污水样品的回收率为83%~110%。  相似文献   

5.
利用固相萃取(SPE)/超高效液相色谱-串联质谱(UPLC-MS/MS)建立了稻渔水体中氟虫腈及其代谢物(氟甲腈、氟虫腈砜和氟虫腈亚砜)的分析方法。根据目标物的化学性质及稻渔水样的基质情况,筛选出适用于稻渔水样预处理的滤膜及稻渔水体中目标物的萃取方法,并对固相萃取条件、氮吹温度等参数进行优化。稻渔水样经玻璃纤维滤纸过滤后,由Supelco ENVI-18固相萃取柱富集、净化,采用SB-C18柱(2.1 mm×100 mm,1.8μm)进行分离,在电喷雾电离源负离子模式下进行检测,外标法定量。结果显示:目标物在0.5~100 ng/mL范围内线性关系良好,相关系数(r2)大于0.998,检出限为0.5 ng/L,定量下限为1.5 ng/L;在2、5、50 ng/L加标水平下的回收率为81.6%~105%,相对标准偏差为3.5%~7.0%。该方法操作简便、灵敏、高效、性价比高,可用于稻渔水体中氟虫腈及其代谢物的同时测定。  相似文献   

6.
分散液液微萃取-气相色谱法测定水样中甲基环硅氧烷   总被引:1,自引:0,他引:1  
将分散液液微萃取与气相色谱法技术相结合,建立了测定水样中3种甲基环硅氧烷残留的方法.重点探讨了萃取剂的种类和用量、分散剂的种类和用量、萃取时间及盐浓度等对样品萃取效率的影响.结果表明在优化条件下,待测物在5~100μg/L范围内线性良好(r>0.99),检出限在2~4μg/L之间,富集倍数可达165~170倍,相对标准...  相似文献   

7.
采用分散固相萃取和分散液液微萃取方法,建立了气相色谱法快速检测甘蓝中氟氯氰菊酯、氯氰菊酯、溴氰菊酯及氰戊菊酯4种拟除虫菊酯农药残留量的分析方法。使用乙腈作为萃取溶剂,经乙二胺-N-丙基硅烷固相萃取吸附剂净化提取液,分散液液微萃取将农药富集到50μL二甲苯中后,采用气相色谱-电子捕获检测器进行分析。考察了萃取溶剂的种类与体积、分散剂体积及盐效应等因素对分散液液微萃取萃取效率的影响。结果表明:除氟氯氰菊酯在0.01~0.1 mg/L范围外,其余3种拟除虫菊酯农药均在0.01~5.0mg/L范围内线性关系良好,相关系数为0.997 9~0.999 2;加标浓度为0.02~0.5μg/g时,除氟氯氰菊酯外其他拟除虫菊酯农药的平均回收率为81.9%~93.5%,相对标准偏差为9.5%~20.7%。该方法简单、高效、重现性好、富集倍数高,可用于甘蓝中拟除虫菊酯类农药的快速检测。  相似文献   

8.
采用分散固相萃取和分散液液微萃取方法,建立了气相色谱法快速检测甘蓝中氟氯氰菊酯、氯氰菊酯、溴氰菊酯及氰戊菊酯4种拟除虫菊酯农药残留量的分析方法。使用乙腈作为萃取溶剂,经乙二胺-N-丙基硅烷固相萃取吸附剂净化提取液,分散液液微萃取将农药富集到50 μL二甲苯中后,采用气相色谱-电子捕获检测器进行分析。考察了萃取溶剂的种类与体积、分散剂体积及盐效应等因素对分散液液微萃取萃取效率的影响。结果表明:除氟氯氰菊酯在 0.01~0.1 mg/L范围外,其余3种拟除虫菊酯农药均在 0.01~5.0 mg/L范围内线性关系良好,相关系数为0.997 9~0.999 2;加标浓度为0.02~0.5 μg/g时,除氟氯氰菊酯外其他拟除虫菊酯农药的平均回收率为81.9%~93.5%,相对标准偏差为9.5%~20.7%。该方法简单、高效、重现性好、富集倍数高,可用于甘蓝中拟除虫菊酯类农药的快速检测。  相似文献   

9.
采用分散固相萃取和分散液液微萃取联用的方法,建立了高效液相色谱快速检测西瓜中氟唑菌酰羟胺残留的分析方法。使用乙腈和水混合溶液作为萃取溶剂,经N-丙基-乙二胺硅烷(PSA)固相萃取吸附剂净化提取液,分散液液微萃取将目标物富集到1,1,2,2-四氯乙烷溶剂中,采用高效液相色谱进行分析。考察了萃取溶剂的种类与体积、分散剂体积及盐浓度等因素对分散液液微萃取萃取效率的影响。结果表明:分析物的质量浓度在0.01~5 mg/L范围内与峰面积的线性关系良好,相关系数(r)为0.999 9,定量下限(S/N=10)为0.01 mg/kg。加标水平为0.01、0.1、1 mg/kg时,平均回收率为89.2%~94.5%,相对标准偏差(n=5)为3.0%~8.7%。该方法简单、高效、灵敏度高,适用于西瓜中氟唑菌酰羟胺的残留检测。  相似文献   

10.
本文建立了液液萃取-气相色谱/质谱同时测定水中O,O,S-三甲基硫代磷酸酯(TMPT)、O,O,S-三甲基二硫代磷酸酯(TMDTP)和O,O,O-三乙基硫代磷酸酯(TETP)3种三烷基硫代磷酸酯类化合物的分析方法。采用电子轰击(EI)-选择离子模式(SIM)进行定性与定量分析。考察了萃取剂种类、pH值以及盐度对萃取效率的影响。在优化的实验条件下,3种目标化合物的线性范围在0.01~2.0μg/mL之间,检出限(S/N=3)为0.26~1.1ng/L,定量限(S/N=10)为0.87~3.7ng/L。以该方法测定自来水、池塘水和湖水样品,3种目标化合物均未检出,不同加标水平(0.05、0.25和1.0μg/L)回收率在85.7%~104.2%之间,相对标准偏差在1.5%~12.2%之间。  相似文献   

11.
以苄基功能化的离子液体1-苄基-3-甲基咪唑双三氟甲烷磺酰亚胺(1-Benzyl-3-methylimidazolium bis [(trifluoromethyl)sulfonyl]imide,[BeMIM][Tf2 N])作为分散液-液微萃取的萃取剂,与高效液相色谱联用,用于环境水样中5种有机磷农药(辛硫磷、杀螟松、毒死蜱、甲拌磷和对硫磷)以及2种苯环化合物(氯化萘和蒽)的萃取与富集。并与其它离子液体([OMIM][Tf2 N])以及普通有机溶剂(CCl4和 C2 Cl4)的萃取效能进行了对比。萃取优化条件为:40μL [BeMIM][Tf2 N]作为萃取剂,1 mL 甲醇作为分散剂,离心时间5 min,样品溶液中不添加盐。在优化的条件下,本方法的线性关系良好(R2=0.9994~0.9998);对10,40和100μg/ L 不同添加浓度重复测定5次的日内和日间 RSD 分别为1.1%~4.3%和0.8%~4.8%,LOD 为0.01~1.0μg/ L (S/ N=3)。将本方法用于3种实际水样中目标分析物的测定,加标回收率和 RSD 分别为82.7%~118.3%和0.7%~5.6%。由于在咪唑环上引入了苄基基团,[BeMIM][Tf2 N]与目标分析物之间除存在疏水作用外,还存在π-π作用,故对目标物的萃取效率明显提高,富集倍数和回收率分别高达339和81.4%。测定了分析物在[BeMIM][Tf2 N]-DLLME 体系中的分配系数,对萃取机制进行初步探讨。  相似文献   

12.
建立了气相色谱-串联质谱法同时测定血液中双甲脒、杀虫脒及其代谢产物的分析方法。优化了样品前处理方法及气相色谱-串联质谱的分析条件,样品经固相支撑液液萃取柱(SLE)净化,乙腈-二氯甲烷(体积比1∶1)洗脱后,在多反应监测模式(MRM)下检测。结果表明,2,4-二甲基苯胺、4-氯邻甲苯胺和双甲脒在1.0~1 000 ng/m L范围内,其余目标物在2.0~1 000 ng/m L范围内线性关系良好,相关系数均大于0.99;定量下限为1.0~2.0 ng/m L,加标回收率为88.6%~113%。该方法简便、快捷、样品用量小,结果准确可靠,灵敏度高,适用于血液中6种目标物的同时检测。  相似文献   

13.
建立了分散液液微萃取-气相色谱电子捕获检测器测定水中15种硝基苯类物质的方法.筛选出了具有高密度且能够适用于电子捕获检测器的萃取剂.优化了色谱条件,对萃取剂种类及用量、分散剂种类及用量、萃取时间、萃取温度等条件进行了优化.DB-35毛细管柱对15种硝基苯类物质具有最好的分离效果.使用程序升温,初始80℃ 保持2 min,以5℃/min速率升温至180℃,可以在22 min内完成分离.以100μL氯苯作为萃取剂、400μL甲醇作为分散剂,对5.00 mL水样在室温下进行萃取,仅需30 s即可达到萃取平衡,15种目标物的萃取率均可达到90%以上,富集倍数达到45.0~48.8.离心分离,取下层沉积相进行气相色谱测定,使用电子捕获检测器检测,方法的定量限为0.03~0.15μg/L,线性范围为0.20~50.0μg/L,相关系数不低于0.998.方法的相对标准偏差在3.3%~8.9%之间,加标回收率在86.0%~103.5%之间.  相似文献   

14.
合成并表征了一种新的对称性1,3-二己基咪唑双三氟甲烷磺酰亚胺(1,3-Dihexylimidazolium bis[(trifluoromethyl)sulfonyl]imide,[HHIM][Tf2N])离子液体,将其作为分散液液微萃取的萃取剂,并与高效液相色谱联用,建立了一种快速、绿色和高灵敏测定环境水样中4种多环芳烃(氯代萘、芴、蒽和)的方法。对比了[HHIM][Tf2N]与其它萃取剂的效果,优化了萃取剂的体积、分散剂的种类和体积、盐浓度、萃取及离心时间。在优化实验条件下对该方法进行评价,方法在一定浓度范围内线性关系良好,相关系数(r2)为0.999 0~0.999 8;5次重复测定的相对标准偏差为1.5%~5.0%;富集倍数为183~372;检出限为0.002 5~1.0μg·L-1。建立的方法能成功用于实际水样包括自来水、地下水、雨水及河水样品中目标物的测定。  相似文献   

15.
基于分散液液微萃取技术和气相色谱-串联质谱,建立了一种快速分析食用油中酚类抗氧化剂的新方法。对影响萃取效果的重要因素,如萃取剂种类及体积、分散剂种类及体积和萃取时间等进行了详细优化。优化条件为:500μL甲醇-乙腈(1:1, V/V)快速注射进3.0 mL 正己烷与1.0 g食用油的混合物中,并振荡萃取10 s 。在优化条件下,方法的线性范围为10~2000 ng/g,检出限为1.5~2.4 ng/g,相对标准偏差为4.0%~8.3%。将本方法应用于4种不同食用油样品的分析,其中3种有酚类抗氧化剂检出,样品加标回收率为81.9%~118%,结果满意。  相似文献   

16.
建立了禽蛋、动物肌肉、内脏和蛋制品中氟虫腈及其代谢物氟甲腈、氟虫腈砜、氟虫腈亚砜的超高效液相色谱-串联质谱(UPLC-MS/MS)检测方法。在QuEChERS方法基础上,针对目标物化学性质和样品杂质情况,对提取溶液的种类、提取次数、净化材料等参数进行了优化。最终样品经乙腈提取,NaCl、无水MgSO_4盐析分层,提取液经PSA结合C_(18)进行分散固相萃取净化,以UPLC-MS/MS进行测定,基质外标法进行定量分析。结果表明,动物源性食品中氟虫腈、氟甲腈、氟虫腈砜、氟虫腈亚的平均加标回收率在75.7%~104.5%之间,相对标准偏差在1.3%~10.4%之间,检出限在0.5~1.6μg/kg之间,定量限为5.0μg/kg。此方法快速、简便、灵敏度高、准确,可用于禽蛋、动物肌肉、内脏和蛋制品中氟虫腈及其3种代谢物残留的同时测定。  相似文献   

17.
采用小体积液液萃取气相色谱-质谱(GC-MS)法测定水体中邻苯二甲酸酯,有效地避免了各种空白干扰。该法以正己烷为萃取剂,对6种目标化合物的富集倍数达8~321倍。在0.40~20.0μg/L范围内线性良好,6种邻苯二甲酸酯的检出限在0.01~0.10μg/L范围内,适用于实际水体中低浓度邻苯二甲酸酯的测定。  相似文献   

18.
何东 《分析测试学报》2016,35(7):844-848
建立了测定环境水样中7种萘二酚的离子液体分散液液微萃取/高效液相色谱(IL-DLLME-HPLC)分析方法。以1-丁基-3-甲基咪唑六氟磷酸盐([C4MIM][PF6])为萃取剂,水样体积为8.0 m L,研究了萃取剂用量、水相p H值、萃取时间及盐添加量对7种萘二酚萃取效率的影响。获得最佳萃取条件为:[C4MIM][PF6]体积为150μL,水相p H值为5.0~7.0,涡旋萃取时间为3 min,氯化钠添加量为0.20 g/m L。在优化条件下,7种萘二酚在一定质量浓度范围内线性关系良好,相关系数均不小于0.997 7;方法富集倍数为57倍,方法检出限(S/N=3)为0.3~1.0μg/L;阴性环境水样中3个加标水平的平均回收率为83.5%~103%,相对标准偏差(n=6)为1.1%~3.8%。该方法快速简单、准确灵敏、环保,适用于环境水样中痕量萘二酚的富集检测。  相似文献   

19.
建立了QuEChERS快速提取和净化样品,气相色谱-三重四级杆质谱联用法测定鸡蛋中氟虫腈及其代谢物氟甲腈、氟虫腈砜、氟虫腈亚砜的方法。水和乙腈萃取、C_(18)和PSA净化样品,气相色谱分离,多反应离子监测模式测定。氟虫腈及其3种代谢物在5~400μg/L范围内线性关系良好,方法的检出限为1.0~2.5μg/kg;定量限为3.0~7.5μg/kg。在两个浓度水平进行加标,上述4种测定物的回收率为72.5%~95.3%,相对标准偏差为3.7%~7.5%。本方法可满足鸡蛋中氟虫腈及其代谢物氟甲腈、氟虫腈砜、氟虫腈亚砜残留检测的实际需要。  相似文献   

20.
建立了基于碳纳米管的固相萃取-分散液液微萃取/ 上浮溶剂固化-高效液相色谱/荧光法测定水体中痕量雌激素雌三醇(E3)、 双酚A(BPA)、 17α-乙炔基雌二醇(EE2)及17β-雌二醇(E2)的方法. 利用中心复合实验设计分别对固相萃取和分散液液微萃取条件进行了优化, 通过响应曲面法得到的最佳萃取条件为碳纳米管用量30 mg, 水样体积210 mL, 流速2.0 mL/min, 萃取剂(十二醇)体积50 μL, 分散剂(甲醇)体积0.2 mL以及不添加盐. 在优化的实验条件下, E3, BPA, EE2和E2测定的线性范围分别为0.05~100, 0.05~100, 0.05~50和0.05~50 μg/L, 相关系数为0.9993~0.9999, 检出限分别为48.4, 3.3, 8.1和6.0 ng/L. 对不同加标浓度(0.40和4.00 μg/L)的实验室自来水、 排水沟污水及市售矿泉水3种实际水样进行了分析: E3, BPA, EE2和E2的加标回收率依次为107.5%~120.8%, 92.5%~108.3%, 103.5%~121.0%和102.5%~132.5%, 相对偏差分别为2.47%~13.28%, 1.73%~11.94%, 1.72%~8.36%和3.54%~11.95%, 富集因子平均值分别为461, 1075, 2074和949. 实际水样分析结果表明, 本方法可用于不同基质水样中雌激素的测定. 与其它方法相比, 本方法虽然固相萃取时间长及水样量大, 但检出限低、 富集因子高、 操作简便及费用低, 仍可作为一种可普及的水中痕量雌激素检测方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号