首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the title compound, C6H10N3+·HSO4, the asymmetric unit consists of a hydrogen sulfate anion and a 2‐amino‐4,6‐di­methyl­pyrimidinium cation. The hydrogen sulfate anions self‐assemble through O—H⋯O hydrogen bonds, forming supramolecular chains along the b axis, while the organic cations form base pairs via N—H⋯N hydrogen bonds. The amino­pyrimidinium cations join to the sulfate anions via a pair of hydrogen bonds donated from the pyrimidinium protonation site and from the exo amine group cis to the protonated site.  相似文献   

2.
The title compound, [Ni(C2H8N2)3][Ni(C3HN3O2)2]·H2O, appears to be a modular associate consisting of two complex counter‐ions, containing bivalent nickel as the central atom in both cases, and a solvent water mol­ecule. The NiII ion in the complex cation lies on the C2 crystallographic axis. Its coordination environment is formed by six N atoms of three ethyl­ene­diamine (en) mol­ecules, representing a distorted octa­hedral geometry. The NiII ion in the complex anion occupies a position at the center of inversion. It exhibits a distorted square‐planar coordination geometry formed by four N atoms belonging to the deprotonated oxidoimine and amide groups of the two doubly charged 2‐cyano‐2‐(oxidoimino)acetamidate anions, situated in trans positions with respect to each other. In the crystal packing, the complex anions are linked by water mol­ecules via hydrogen bonds between the amide O atoms and water H atoms, forming chains translated along the a direction. The [Ni(en)3]2+ cations fill empty spaces between the translational chains, connecting them by hydrogen bonds between the oxime and amide O atoms of the anions and the amine H atoms of the cations, forming layers along the ac plane. The water mol­ecules provide connection between layers through N atoms of the cations, thus forming a three‐dimensional modular structure.  相似文献   

3.
4.
In the title compound, C4H12N22+·2C8H7O3?·2CH4O, the cations lie across centres of inversion and are disordered over two orientations with equal occupancy; there are equal numbers of (R)‐ and (S)‐mandelate anions present (mandelate is α‐hydroxy­benzene­acetate). The anions and the neutral water mol­ecules are linked by O—H?O hydrogen bonds [O?O 2.658 (3) and 2.682 (3) Å, and O—H?O 176 and 166°] into deeply folded zigzag chains. Each orientation of the cation forms two symmetry‐related two‐centre N—H?O hydrogen bonds [N?O 2.588 (4) and 2.678 (4) Å, and N—H?O 177 and 171°] and two asymmetric, but planar, three‐centre N—H?(O)2 hydrogen bonds [N?O 2.686 (4)–3.137 (4) Å and N—H?O 137–147°], and by means of these the cations link the anion/water chains into bilayers.  相似文献   

5.
Glycinium semi‐oxalate‐II, C2H6NO2+·C2HO4, (A), and diglycinium oxalate methanol disolvate, 2C2H6NO2+·C2O42−·2CH3OH, (B), are new examples in the glycine–oxalic acid family. (A) is a new polymorph of the known glycinium semi‐oxalate salt, (C). Compounds (A) and (C) have a similar packing of the semi‐oxalate monoanions with respect to the glycinium cations, but in (A) the two glycinium cations and the two semi‐oxalate anions in the asymmetric unit are non‐equivalent, and the binding of the glycinium cations to each other is radically different. Based on this difference, one can expect that, although the two forms grow concomitantly from the same batch, a transformation between (A) and (C) in the solid state should be difficult. In (B), two glycinium cations and an oxalate anion, which sits across a centre of inversion, are linked via strong short O—H...O hydrogen bonds to form the main structural fragment, similar to that in diglycinium oxalate, (D). Methanol solvent molecules are embedded between the glycinium cations of neighbouring fragments. These fragments form a three‐dimensional network via N—H...O hydrogen bonds. Salts (B) and (D) can be obtained from the same solution by, respectively, slow or rapid antisolvent crystallization.  相似文献   

6.
The crystals of the title new melaminium salt, 2,4,6‐tri­amino‐1,3,5‐triazin‐1‐ium acetate acetic acid solvate monohydrate, C3H7N6+·CH3COO?·CH3COOH·H2O, are built up from singly protonated melaminium residues, acetate anions, and acetic acid and water mol­ecules. The melaminium residues are interconnected by N—H?N hydrogen bonds to form chains along the [010] direction. These chains of melaminium residues form stacks aligned along the a axis. The acetic acid mol­ecules interact with the acetate anions via the H atom of their carboxylic acid groups and, together with the water mol­ecules, form layers that are parallel to the (001) plane. The oppositely charged moieties interact via multiple N—H?O hydrogen bonds that stabilize a pseudo‐two‐dimensional stacking structure.  相似文献   

7.
Glycinium semi‐malonate, C2H6NO2+·C3H3O4, (I), and glutaric acid–glycine (1/1), C2H5NO2·C5H8O4, (II), are new examples of two‐component crystal structures containing glycine and carboxylic acids. (II) is the first example of a glycine cocrystal which cannot be classified as a salt, as glutaric acid remains completely protonated. In the structure of (I), there are chains formed exclusively by glycinium cations, or exclusively by malonate anions, and these chains are linked with each other. Two types of very short O—H...O hydrogen bonds are present in the structure of (I), one linking glycinium cations with malonate anions, and the other linking malonate anions with each other. In contrast to (I), no direct linkages between molecules of the same type can be found in (II); all the hydrogen‐bonded chains are heteromolecular, with molecules of neutral glutaric acid alternating with glycine zwitterions, linked by two types of short O—H...O hydrogen bonds.  相似文献   

8.
Crystals of 2,4,6‐tri­amino‐1,3,5‐triazin‐1‐ium levulinate (4‐oxo­pentanoate) monohydrate, C3H7N6+·C5H7O3·H2O, are formed via self‐assembled hydrogen bonding by cocrystallization of mel­amine and levulinic acid. Two N—H⋯N hydrogen bonds and four N—H⋯O hydrogen bonds connect two melaminium entities such that each of two pairs of N—H⋯O bonds bridges two H atoms belonging to the amine groups of two different melaminium cations via the carbonyl O atom of one levulinate mol­ecule.  相似文献   

9.
The title salt, C13H12N3+·H2PO4, contains a nonplanar 2‐(2‐aminophenyl)‐1H‐benzimidazol‐3‐ium cation and two different dihydrogen phosphate anions, both situated on twofold rotation axes in the space group C2. The anions are linked by O—H...O hydrogen bonds into chains of R22(8) rings. The anion chains are linked by the cations, via hydrogen‐bonding complementarities and electrostatic interactions, giving rise to a sheet structure with alternating rows of organic cations and inorganic anions. Comparison of this structure with that of the pure amine reveals that the two compounds generate characteristically different sheet structures. The anion–anion chain serves as a template for the assembly of the cations, suggesting a possible application in the design of solid‐state materials.  相似文献   

10.
Crystals of l ‐leucinium perchlorate, C6H14NO2+·ClO4, are built up from protonated l ‐leucinium cations and perchlorate anions. l ‐Leucinium cations related by a twofold screw axis are inter­connected by N—H⋯O hydrogen bonds into zigzag chains parallel to [010]. The O atoms of the perchlorate anions act as acceptors of hydrogen bonds that link the l ‐leucinium chains into separated but inter­acting two‐dimensional layers parallel to (001). Since the title compound crystallizes in a non‐centrosymmetric space group, it can be useful as a material for non‐linear optics. The efficiency of second harmonic generation is about twice that of K2[HPO4].  相似文献   

11.
In the title compound, 2C5H6N5+·C8H4O42−·C8H6O4·1.45H2O, the asymmetric unit comprises two adeninium cations, two half phthalate anions with crystallographic C2 symmetry, one neutral phthalic acid mol­ecule, and one fully occupied and one partially occupied site (0.45) for water mol­ecules. The adeninium cations form N—H⋯O hydrogen bonds with the phthalate anions. The cations also form infinite one‐dimensional polymeric ribbons via N—H⋯N inter­actions. In the crystal packing, hydrogen‐bonded columns of cations, anions and phthalate anions extend parallel to the c axis. The water mol­ecules crosslink adjacent columns into hydrogen‐bonded layers.  相似文献   

12.
The CuI cations in the title compound, [Cu(NCS)(C6H6N2O)2]n, are coordinated by N atoms from each of two mirror‐related nicotin­amide ligands, as well as by one N atom of one thio­cyanate ligand and one S atom of a symmetry‐related thio­cyanate ligand, within a slightly distorted tetrahedron. The CuI cations and the thio­cyanate anions are located on a crystallographic mirror plane and the nicotin­amide ligands occupy general positions. The CuI cations are connected by the thio­cyanate anions to form chains in the direction of the crystallographic a axis. These chains are connected by hydrogen bonds between the amide H atoms and the O atoms of adjacent nicotin­amide ligands, to give a three‐dimensional structure.  相似文献   

13.
In the title compound, C5H14N3+·H2PO4?, the cation has a central guanidinium fragment with a planar geometry, as expected for a central Csp2 atom with a small charge delocalization along the three C—N bonds. The crystal packing is governed by hydrogen bonds so that the phosphate anions are linked head to tail, forming chains running parallel to the c direction. These chains in turn are interconnected by hydrogen bonds to intermediate tetra­methyl­guanidinium cations forming hydrogen‐bonded molecular layers stacked parallel to the bc crystal planes.  相似文献   

14.
The title compound, C16H36N+·C6H7O3?, crystallizes with two independent anions and two independent cations in the asymmetric unit. Each anion adopts an strans conformation and forms O?H—C hydrogen bonds to the α‐methyl­ene groups of four neighbouring tetra­butyl­ammonium cations, to create a three‐dimensional hydrogen‐bonded network.  相似文献   

15.
In the title compound, 2C8H18NO3+·2C7H6NO2·3H2O, proton transfer occurs from the carboxylic acid group of the 4‐amino­benzoic acid (PABA) mol­ecule to the amine group of the macrocycle, resulting in the formation of a salt‐like adduct. The anions are combined into helical chains which are further bound by the water mol­ecules into sheets. The macrocyclic cations are situated between these layers and are bound to the anions both directly and via bridging water mol­ecules. The structure exhibits a diverse system of hydrogen bonding.  相似文献   

16.
The crystals of a new melaminium salt, 2,4,6‐tri­amino‐1,3,5‐triazin‐1‐ium chloride hemihydrate, C3H7N6+·Cl?·0.5H2O, are built up from single‐protonated melaminium residues, chloride anions and water mol­ecules. The protonated melaminium cations lie on a twofold axis, while the chloride anions and water mol­ecule lie on the m plane. The melaminium residues are interconnected by N—H?N hydrogen bonds, forming chains parallel to the (001) plane. The chains of melaminium residues form a three‐dimensional network through hydrogen‐bond interactions with chloride anions and water mol­ecules.  相似文献   

17.
The structure of the title compound, NH4+·C4H5O4S, is composed of mono­carboxyl­ate anions of [(carboxymethyl)sulfanyl]acetic acid linked into infinite chains via strong O—H⋯O hydrogen bonds. The three‐dimensional structure is completed by the ammonium cations, which interlink neighbouring chains via N—H⋯O hydrogen bonds. Solution and refinement in the true space group Pn led to an unambiguous position for the single carboxyl H atom. In the higher symmetry space group P2/n, the carboxylate anion would be located on a twofold axis.  相似文献   

18.
The title compound, catena‐poly­[[μ‐cyano‐1:2κ2C:N‐dicyano‐1κ2C‐bis(N,N‐di­methyl­ethyl­enedi­amine‐2κ2N,N′)­pallad­ium(II)­copper(II)]‐μ‐cyano‐1:2′κ2C:N], [CuPd(CN)4(C4H12N2)2]n, consists of infinite quasi‐linear chains with all metal positions on centers of symmetry. The paramagnetic [Cu(dmen)2]2+ cations are linked by diamagnetic [Pd(CN)4]2− anions via bridging cyano groups, which occupy trans positions in both cation and anion, giving rise to 2,2‐TT‐type chains. The coordination polyhedron of the paramagnetic Cu atom is an octahedron exhibiting typical elongation due to the Jahn–Teller effect, with two longer Cu—N([triple‐bond]C) bonds in the axial positions [2.5528 (13) Å] and four shorter Cu—Ndmen bonds (dmen is N,N‐dimethylethylenediamine) in the equatorial plane [1.9926 (11) and 2.1149 (12) Å]. The Cu—N[triple‐bond]C angle is 138.03 (12)°. Neighboring chains form weak N—H⋯NC hydrogen bonds.  相似文献   

19.
In the title compound, C2H6NO2+·C2F3O2?, the main N—C—COOH skeleton of the glycinium cation is almost perfectly planar. The tri­fluoro­acetate anion has a staggered conformation with typical bond distances and angles. The CF3 group is slightly disordered. The structure is stabilized by an extensive network of strong O—H?O hydrogen bonds and weaker N—H?O bonds.  相似文献   

20.
Sodium trichloro­methane­sulfonate monohydrate, Na+·CCl3SO3·H2O, crystallizes in P21/a with all the atoms located in general positions. The trichloro­methane­sulfonate (trichlate) anion consists of pyramidal SO3 and CCl3 groups connected via an S—C bond in a staggered conformation with approximate C3v symmetry. The water mol­ecule is hydrogen bonded to the sulfonate O atoms, with one water H atom forming weak bifurcated O—H⋯O hydrogen bonds to two different trichlate ions. Two water O atoms and three O atoms from different SO3 groups form a square‐pyramidal arrangement around the sodium ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号