首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the title compound, [Hg(NO3)(C6H6N2O)2]NO3, the HgII atom is five‐coordinate. The distorted square‐pyramidal mercury(II) coordination environment is achieved by two N,O‐bidentate picolinamide ligands, with one O‐monodentate nitrate ion in the apical position. A seven‐coordinate extended coordination environment is completed by two additional weak Hg...O interactions, one from the coordinated nitrate ion and one from the other nitrate ion, to give seven‐coordination. The molecules are linked into a two‐dimensional network by N—H...O hydrogen bonds.  相似文献   

2.
In the title compound, [Sn(C3H4F3)2Cl2(C5H5N)2], the Sn atom lies on an inversion centre and is octahedrally coordinated by two Cl atoms, two tri­fluoro­propyl groups and two N atoms in an all‐trans configuration. The electronegative tri­fluoro­propyl groups increase the electrophilic properties of the Sn atom, and the Sn—Cl and Sn—N bonds are shortened in comparison with those reported for analogous compounds.  相似文献   

3.
The title compound, [Cu2(C7H5O2)4(C7H10N2)2], is a crystallographically centrosymmetric binuclear complex, with Cu atoms [Cu...Cu = 2.6982 (4) Å] bridged by four benzoate ligands. Each of the Cu atoms in this bunuclear copper(II) acetate hydrate analogue is present in an approximately square‐pyramidal environment, with four O atoms in a plane and the pyridine N atom at the apical site. Selected geometric parameters are compared with values for related tetrabenzoate complexes of copper(II).  相似文献   

4.
In the structure of the title compound, [Cd2(C4H4NO4S)2(C6H7N)2], the dinuclear CdII complex is located on a twofold axis with two Cd2+ ions bridged by two oxide O atoms. Each Cd2+ ion is additionally coordinated in an equatorial plane by two N and three O atoms of the acesulfamate ligands and axially by two N atoms of the 3‐methylpyridine ligands, resulting in a distorted pentagonal bipyramidal coordination. We present here an example of a supramolecular assembly based on hydrogen bonds in a mixed‐ligand metal complex; intermolecular C—H...O hydrogen bonds give rise to R44(40) rings, which lead to one‐dimensional chains.  相似文献   

5.
In the title compound, [Ag(C7H5O2)(C5H6N2)2], the AgI atom is tricoordinated by two independent pyridine N atoms and one benzoate O atom in a nearly planar geometry. An intramolecular N—H⃛O hydrogen bond forms an S(8) graph ring. The packing is built from molecular layers stabilized by two types of N—H⃛O hydrogen bond. Intermolecular Ag⃛N and intramolecular Ag⃛O contacts were also observed, together with three weak intermolecular C—H⃛π interactions.  相似文献   

6.
A novel dinuclear bismuth(III) coordination compound, [Bi2(C7H3NO4)2(N3)2(C12H8N2)2]·4H2O, has been synthesized by an ionothermal method and characterized by elemental analysis, energy‐dispersive X‐ray spectroscopy, IR, X‐ray photoelectron spectroscopy and single‐crystal X‐ray diffraction. The molecular structure consists of one centrosymmetric dinuclear neutral fragment and four water molecules. Within the dinuclear fragment, each BiIII centre is seven‐coordinated by three O atoms and four N atoms. The coordination geometry of each BiIII atom is distorted pentagonal–bipyramidal (BiO3N4), with one azide N atom and one bridging carboxylate O atom located in axial positions. The carboxylate O atoms and water molecules are assembled via O—H...O hydrogen bonds, resulting in the formation of a three‐dimensional supramolecular structure. Two types of π–π stacking interactions are found, with centroid‐to‐centroid distances of 3.461 (4) and 3.641 (4) Å.  相似文献   

7.
The title compound, [Co(C7H4FO2)2(C6H6N2O)2(H2O)2], is a three‐dimensional hydrogen‐bonded supramolecular complex. The CoII ion resides on a centre of symmetry and is in an octahedral coordination environment comprising two pyridyl N atoms, two carboxylate O atoms and two O atoms from water molecules. Intermolecular N—H...O and O—H...O hydrogen bonds produce R32(6), R22(12) and R22(16) rings, which lead to two‐dimensional chains. An extensive three‐dimensional network of C—H...F, N—H...O and O—H...O hydrogen bonds and π–π interactions are responsible for crystal stabilization.  相似文献   

8.
The title compound, [Co(C7H5O3)2(C6H6N2O)2(H2O)2], forms a three‐dimensional hydrogen‐bonded supramolecular structure. The CoII ion is in an octahedral coordination environment comprising two pyridyl N atoms, two carboxylate O atoms and two O atoms from water molecules. Intermolecular N—H...O and O—H...O hydrogen bonds produce R22(8), R22(12) and R22(14) rings, which lead to two‐dimensional chains. An extensive three‐dimensional supramolecular network of C—H...O, N—H...O and O—H...O hydrogen bonds and C—H...π interactions is responsible for crystal structure stabilization. This study is an example of the construction of a supramolecular assembly based on hydrogen bonds in mixed‐ligand metal complexes.  相似文献   

9.
In the crystal structure of the title compound [systematic name: diaqua­bis(6‐methyl‐2,2‐dioxo‐1,2,3‐oxathia­zin‐4‐olato‐κO4)bis­(3‐methyl­pyridine‐κN)nickel(II)], [Ni(C4H4NO4S)2(C6H7N)2(H2O)2], the NiII centre resides on a centre of symmetry and has a distorted octa­hedral geometry. The basal plane is formed by two carbonyl O atoms of two monodentate trans‐oriented acesulfamate ligands and two trans aqua ligands. The axial positions in the octa­hedron are occupied by two N atoms of two trans pyridine ligands. Mol­ecules are stacked in columns running along the a axis. There are π–π stacking inter­actions between the mol­ecules in each column, with a distance of 3.623 (2) Å between the centroids of the pyridine rings. There are also O—H⋯O inter­actions between the columns.  相似文献   

10.
The title compound, [Co2(C2H4NO)2(OH)2(C5H5N)4](ClO4)2·2C2H3N, consists of two octahedral CoIII centers arranged around an inversion point in which two cis hydroxide and two trans acetylamidate ligands link the two centers together, forming a dimeric cationic complex. Each CoIII center has two cis pyridine ligands which coordinate in the same plane as the cis hydroxide ligands. Two acetonitrile solvent molecules and two perchlorate anions are hydrogen bonded to the H atoms on the bridging hydroxide and acetylamidate (N atom) ligands, respectively.  相似文献   

11.
In the title complex, [Pd(C12H8FN4O2)2(C5H5N)2] or trans‐[Pd(FC6H4N=N—NC6H4NO2)(C5H5N)2], the Pd atom lies on a centre of inversion in space group P. The coordination geometry about the Pd2+ ion is square planar, with two deprotonated 3‐(2‐fluoro­phenyl)‐1‐(4‐nitro­phenyl)­triazenide ions, FC6H4N=N—NC6H4NO2?, acting as monodentate ligands (two‐electron donors), while two neutral pyridine mol­ecules complete the metal coordination sphere. The whole triazenide ligand is not planar, with the largest interplanar angle being 16.8 (5)° between the phenyl ring of the 2‐­fluorophenyl group and the plane defined by the N=N—N moiety. The Pd—N(triazenide) and Pd—N(pyridine) distances are 2.021 (3) and 2.039 (3) Å, respectively.  相似文献   

12.
The title compound, [Zn(C29H29N5)2](ClO4)2·2CH3NO2, contains a ZnII ion showing only small deviations from local D2d symmetry. The lower rhombicity exhibited by this complex compared with that of its CuII congener suggests that the highly rhombic stereochemistry exhibited by the latter is largely imposed by the stereoelectronic preferences of the CuII ion.  相似文献   

13.
The title compound, [Cu(C7H5O3)2(C6H6N2O)2(H2O)2], is a two‐dimensional hydrogen‐bonded supramolecular complex. The CuII ion resides on a centre of symmetry and is in an octahedral coordination environment comprising two pyridine N atoms, two carboxylate O atoms and two O atoms from water molecules. Intermolecular N—H...O and O—H...O hydrogen bonds produce R22(4), R22(8) and R22(15) rings which lead to one‐dimensional polymeric chains. An extensive two‐dimensional network of N—H...O and O—H...O hydrogen bonds and C—H...π interactions are responsible for crystal stabilization.  相似文献   

14.
In the title compound, [Li(C4H8O)4][ZrCl2(C12H8N)3(C4H8O)], the environment of the Zr atom is pseudo‐octahedral, with the three carbazolyl ligands in a mer configuration. The counter‐ion of the zirconium complex is composed of an Li atom surrounded by four tetra­hydro­furan (THF) mol­ecules. The THF mol­ecule attached to the Zr atom is disordered over two sites, as are two of the THF mol­ecules in the lithium moiety. All bond distances and angles are consistent with those in complexes with similar structural entities. The Zr—N bond distances are 2.2185 (18) and 2.167 (3) Å.  相似文献   

15.
The title compound, [Mn(NCS)2(C18H12N6)2(CH4O)2], con­tains a centrosymmetric octahedral MnII centre and three pairs of trans‐coordinating ligands. It is the first example of a mononuclear metal complex with the 2,4,6‐tri(4‐pyridyl)‐1,3,5‐triazine (tpt) ligand. Intermolecular π–π stacking of the planar tpt ligands, as well as hydrogen bonds between pyridyl N and methanol H atoms, results in the formation of a three‐dimensional network.  相似文献   

16.
The title compound, [Cu(Cr2O7)(C10H8N2)2], a new mixed‐metal molecular compound, contains isolated molecular units, each comprised of one CuII atom coordinated to two 2,2′‐bi­pyridine ligands and also to an oxy­gen vertex of a dichromate anion. The CuII atom has an approximate trigonal–bipyramidal geometry, which is consistent with previous studies. Both enantiomers of the chiral complex mol­ecule are present and are related by inversion centers. In a reported pyridine analogue, achiral [Cu(Cr2O7)(pyridine)4] chains pack in the non‐centrosymmetric space group Pna21. Differences in the organic ligands influence the chirality and dimensionality of the Cu—Cr2O7 bonding.  相似文献   

17.
In the square‐planar title complex, [PtI2(C7H7NO)2], the Pt atom lies on a crystallographic inversion center, coinciding with an anti arrangement of the 3‐acetyl­pyridine ligands. The dihedral angles between the pyridine rings and the Pt coordination plane are 67.5 (2)°, while those between the pyridine rings and the acetyl planes are 20.8 (5)°. The 195Pt NMR resonance of the title complex (CD2Cl2) was observed at −3224 p.p.m. The major structural parameters are compared with those from previously reported related structures.  相似文献   

18.
The structure of the title compound, [PtCl2(C5H5N)(C2H6S)], consists of discrete mol­ecules in which the Pt‐atom coordination is slightly distorted square planar. The Cl atoms are trans to each other, with a Cl—Pt—Cl angle of 176.60 (7)°. The pyridine ligand is rotated 64.5 (2)° from the Pt square plane and one of the Pt—Cl bonds essentially bisects the C—S—C angle of the di­methyl sulfide ligand. In the crystal structure, there are extensive weak C—H⋯Cl interactions, the shortest of which connects mol­ecules into centrosymmetric dimers. A comparison of the structural trans influence on Pt—S and Pt—­N distances for PtS(CH3)2 and Pt(pyridine) fragments, respectively, in square‐planar PtII complexes is presented.  相似文献   

19.
The molecular geometry of the tetragonal crystal structure of the title compound, [Ru(NO2)2(C5H5N)4]·2H2O, differs from that previously determined by powder diffraction [Schaniel et al. (2010). Phys. Chem. Chem. Phys. 12 , 6171–6178]. In the [Ru(NO2)(C5H5N)4] molecule, the Ru atom lies at the intersection of three twofold axes (Wyckoff position 8b). It is coordinated by four N atoms of the pyridine rings, as well as by two N atoms of N‐nitrite groups. The last two N atoms are located on a twofold axis (Wyckoff position 16f). The O atoms of the water molecules are situated on a twofold axis (Wyckoff position 16e). Short intermolecular contacts are observed in the crystal structure, viz. N—O...OW and N—O...H—OW contacts between nitrite and water, and weak C—H...OW hydrogen bonds between pyridine and water. Thus, the intercalated water molecules act as bridges connecting the trans‐[Ru(NO2)2(py)4] molecules into a three‐dimensional network.  相似文献   

20.
The title compound, [Ti2Cl6(C2H6N)2(C2H7N)2], is a binuclear octahedral complex lying about an inversion centre. There are four different chloride environments, two terminal [Ti—Cl = 2.2847 (5) and 2.3371 (5) Å] and two bridging [Ti—Cl = 2.4414 (5) and 2.6759 (5) Å], with the Ti—Cl distances being strongly influenced by both the ligand trans to the chloride and whether or not the chloride anion is bridging between the two TiIV centres. The compound forms a two‐dimensional network in the solid state, with weak intermolecular C—H...Cl interactions giving rise to a planar network in the (10) plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号