首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the crystal structure of the title complex, [Zn(N3)2(C6H8N6)]n or [Zn(N3)2(bte)]n, where bte is μ‐1,2‐bis(1,2,4‐triazol‐1‐yl)­ethane, each Zn atom is pentacoordinated in a distorted trigonal‐bipyramidal coordination environment involving two N atoms from two bte ligands and three N atoms from three azide ligands. The Zn atoms are bridged by μ‐1,1‐azide groups and bte ligands around a centre of inversion, forming an infinite one‐dimensional chain containing both four‐membered Zn(μ‐1,1‐N3)2Zn and 18‐membered Zn(gauche‐bte)2Zn rings.  相似文献   

2.
The crystal structures of the monomeric palladium(II) azide complexes of the type L2Pd(N3)2 (L = PPh3 ( 1 ), AsPh3 ( 2 ), and 2‐chloropyridine ( 3 )), the dimeric [(AsPh4)2][Pd2(N3)4Cl2] ( 4 ), the homoleptic azido palladate [(PNP)2][Pd(N3)4] ( 5 ) and the homoleptic azido platinates [(AsPh4)2][Pt(N3)4] · 2 H2O ( 6 ) and [(AsPh4)2][Pt(N3)6] ( 7 ) were determined by X‐ray diffraction at single crystals. 1 and 2 are isotypic and crystallize in the triclinic space group P1. 1 , 2 and 3 show terminal azide ligands in trans position. In 4 the [Pd2(N3)4Cl2]2– anions show end‐on bridging azide groups as well as terminal chlorine atoms and azide ligands. The anions in 5 and 6 show azide ligands in equal positions with almost local C4h symmetry at the platinum and palladium atom respectively. The metal atoms show a planar surrounding. The [Pt(N3)6]2– anions in 7 are centrosymmetric (idealized S6 symmetry) with an octahedral surrounding of six nitrogen atoms at the platinum centers.  相似文献   

3.
In the crystal structure of the title complex, poly­[[di­azido­manganese(II)]‐di‐μ‐1,2‐bis­(imidazol‐1‐yl)­ethane‐κ4N3:N3′], [Mn(N3)2(C8H10N4)2]n or [Mn(N3)2(bim)2]n, where bim is 1,2‐­bis(imidazol‐1‐yl)­ethane, each MnII atom is six‐coordinated in a distorted octahedral coordination environment to four N atoms from four bim ligands and two N atoms from two azide ligands. The MnII atoms, which lie on inversion centres, are bridged by four bim ligands to form a two‐dimensional (4,4)‐network. The azide ligands are monodentate (terminal).  相似文献   

4.
Summary The crystal structure of pentacesium octaazidoeuropiate(III), Cs5Eu(N3)8, was determined by single crystal X-ray diffraction: orthorhombic,a=16.811(4),b=16.860(5),c=16.964(3)Å, space group Pbca,Z=8, 2 310 observed reflections,R=0.048. Europium atoms are coordinated to eight azide groups, the coordination polyhedra have no azide groups in common. Four cesium atoms are surrounded by eight, one by seven azide groups. The azide groups are symmetric with mean N-N-distances of 1.17(1)Å.
  相似文献   

5.
A pair of azido-bridged Schiff base copper complexes, [CuL1(μ1,3-N3)] n · nClO4 (1) and [Cu2(L2)2(μ 1,1-N3)2] · 2ClO4 (2) (L1 = N,N-diethyl-N′-(1-pyridin-2-ylmethylidene)ethane-1,2-diamine, L2 = N-isopropyl-N′-(1-pyridin-2-ylmethylidene)ethane-1,2-diamine) have been obtained by the same synthetic procedures, but with slightly different Schiff bases. The structures of the complexes have been characterized by IR spectra, elemental analysis, and single crystal X-ray determination. Each Cu atom in the complexes is five-coordinate in a square pyramidal configuration involving the three N atoms of the Schiff base ligand and two N atoms from two bridging azide ligands. The azide ligands adopt end-to-end bridging mode in (1), and end-on bridging mode in (2). The different coordination modes of the azide ligands in the two complexes are assigned to the steric effects of the terminal groups (two ethyl groups for (1) and one isopropyl group for (2)) in the Schiff base ligands. The urease inhibitory activities of the complexes were evaluated. Both of them showed potent inhibition against jack bean urease. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.

A new dinuclear Cd(II) complex, [L2Cd2(μ-N3)2(N3)2], containing two end-on bridging azide ligands, two monodentate N3 ligands and 1,4,7-triazacyclononane as the capping ligand, has been synthesized and its structure determined by X-ray crystallography. The complex crystallizes in the monoclinic space group P21/c with a=8.467(3), b=14.359(5), c=10.115(4)Å, β=95.026(6)° and z=4. The cadmium(II) centre is six-coordinate with distorted octahedral geometry, bonded to three N atoms of the 1,4,7-triazacyclononane, two nitrogen atoms of μ-azide bridges and one nitrogen atom of a monodentate azide ligand. Neighboring Cd(II) atoms are linked by the double end-on azide bridges.  相似文献   

7.
The title polymeric compound, [CuCl2(C5H10N4)2]n, is the first structurally characterized complex with a bulky 1‐alkyl­tetrazole ligand. The coordination polyhedron of the Cu atom is an elongated octahedron. The equatorial positions of the octahedron are occupied by the two Cl atoms, with Cu—Cl distances of 2.2920 (8) and 2.2796 (9) Å, and by the two N‐4 atoms of the tetrazole ligands, with Cu—N distances of 2.023 (2) and 2.039 (2) Å. Two symmetry‐related Cl atoms occupy the axial positions, at distances of 2.8244 (8) and 3.0174 (8) Å from the Cu atom. The [CuCl2(C5H10N4)2] units form infinite chains extended along the b axis, linked together only by van der Waals interactions. The skeleton of each chain consists of Cu and Cl atoms.  相似文献   

8.
A novel dinuclear bismuth(III) coordination compound, [Bi2(C7H3NO4)2(N3)2(C12H8N2)2]·4H2O, has been synthesized by an ionothermal method and characterized by elemental analysis, energy‐dispersive X‐ray spectroscopy, IR, X‐ray photoelectron spectroscopy and single‐crystal X‐ray diffraction. The molecular structure consists of one centrosymmetric dinuclear neutral fragment and four water molecules. Within the dinuclear fragment, each BiIII centre is seven‐coordinated by three O atoms and four N atoms. The coordination geometry of each BiIII atom is distorted pentagonal–bipyramidal (BiO3N4), with one azide N atom and one bridging carboxylate O atom located in axial positions. The carboxylate O atoms and water molecules are assembled via O—H...O hydrogen bonds, resulting in the formation of a three‐dimensional supramolecular structure. Two types of π–π stacking interactions are found, with centroid‐to‐centroid distances of 3.461 (4) and 3.641 (4) Å.  相似文献   

9.
The crystal structures of tris(2‐methyl­quinolin‐8‐olato‐N,O)­iron(III), [Fe­(C10­H8­NO)3], (I), and aqua­bis(2‐methyl­quinolin‐8‐olato‐N,O)­copper(II), [Cu­(C10­H8NO)2­(H2O)], (II), have been determined. Compound (I) has a distorted octahedral configuration, in which the central Fe atom is coordinated by three N atoms and three O atoms from three 2‐methylquinolin‐8‐olate ligands. The three Fe—O bond distances are in the range 1.934 (2)–1.947 (2) Å, while the three Fe—N bond distances range from 2.204 (2) to 2.405 (2) Å. In compound (II), the central CuII atom and H2O group lie on the crystallographic twofold axis and the coordination geometry of the CuII atom is close to trigonal bipyramidal, with the three O atoms in the basal plane and the two N atoms in apical positions. The Cu—N bond length is 2.018 (5) Å. The Cu—O bond length in the basal positions is 1.991 (4) Å, while the Cu—O bond length in the apical position is 2.273 (6) Å. There is an intermolecular OW—H?O hydrogen bond which links the mol­ecules into a linear chain along the b axis.  相似文献   

10.
The water‐insoluble title compound, octakis(μ‐acetato‐κ2O:O)­octakis(μ‐nitro­so‐κ2N:O)­octapalladium(II), [Pd8(CH3COO)8(NO)8], was precipitated as a yellow powder from a solution of palladium nitrate in nitric acid by adding acetic acid. Ab initio crystal structure determination was carried out using X‐ray powder diffraction techniques. Patterson and Fourier syntheses were used for atom locations, and the Rietveld technique was used for the final structure refinement. The crystal structure is of a molecular type. The skeleton of the [Pd8(CH3COO)8(NO)8] mol­ecule is con­structed as a tetragonal prism with Pd atoms at the vertices. The eight NO groups are in bridging positions along the horizontal edges of the prism. The N and O atoms of each nitro­so group coordinate two different Pd atoms. The vertical edges present Pd⋯Pd contacts with a short distance of 2.865 (1) Å. These Pd atoms are bridged by a pair of acetate groups in a cis orientation with respect to each other. The complex has crystallographically imposed 4/m symmetry; all C atoms of the acetate groups are on mirror planes. The unique Pd atom lies in a general position and has square‐planar coordination, consisting of three O and one N atom.  相似文献   

11.
In the title compound, [Cu2(μ‐1,3‐N3)(N3)2(phen)4](N3)·4H2O (phen is 1,10‐phenanthroline, C12H8N2), each of the two Cu atoms is surrounded by two N atoms of two azide anions and by four N atoms of two 1,10‐phenanthroline ligands [Cu—N distances are 1.964 (3), 2.009 (3), 2.018 (3), 2.054 (3), 2.306 (3) and 2.759 (4) Å], forming an elongated CuN6 octahedron. An ideally linear μ1,3‐azide anion bridges two Cu atoms to form a dimeric structure with the central N atom located on a centre of inversion. Moreover, the adjacent dimeric units are connected by hydrogen‐bond interactions to produce one‐dimensional chains. A two‐dimensional supramolecular array is formed by π–π interactions between the aromatic rings of 1,10‐phenanthroline ligands of adjacent dimeric units.  相似文献   

12.
Two new complexes, [Co(C2N3)2(C8H6N2)2], (I), and [Cu(C2N3)2(C8H6N2)2], (II), are reported. They are essentially isomorphous. Complex (I) displays distorted octahedral geometry, with the Co atom coordinated by four dicyan­amide nitrile N atoms [Co—N = 2.098 (3) and 2.104 (3) Å] in the basal plane, along with two monodentate quinoxaline N atoms [Co—N = 2.257 (2) Å] in the apical positions. In complex (II), the Cu atom is surrounded by four dicyan­amide nitrile N atoms [Cu—N = 2.003 (3) and 2.005 (3) Å] in the equatorial plane and two monodentate quinoxaline N atoms [Cu—N = 2.479 (3) Å] in the axial sites, to form a distorted tetragonal–bipyramidal geometry. The metal atoms reside on twofold axes of rotation. Neighbouring metal atoms are connected via double dicyan­amide bridges to form one‐dimensional infinite chains. Adjacent chains are then linked by π–π stacking interactions of the quinoxaline mol­ecules, resulting in the formation of a three‐dimensional structure.  相似文献   

13.
The title compound, di‐μ‐diethyl­amido‐N:N‐bis­[chloro­di­methyl­tin(IV)], consists of discrete [Sn2Cl2(CH3)4(C4H10N)2] dimer mol­ecules, with Sn atoms linked by bridging diethyl­amido groups. The coordination geometry about the metal atom is distorted trigonal bipyramidal, with the two methyl C atoms and one N atom in the equatorial plane, and the Cl and second N atom in axial positions.  相似文献   

14.
In bis­(1,2‐ethanedi­amine‐N,N′)­bis­[tri­iodo(1?)‐I]copper, [Cu(I3)2­(C2H8N2)2], the triiodide anions form chains parallel to [001]. The central metal ion (site symmetry 2/m) of the complex cation is coordinated to four N atoms and to two I atoms. The geometry of the square‐bipyramidal complex is as expected, with d(Cu—N) = 2.006 (5) and d(Cu—I) = 3.3600 (9) Å.  相似文献   

15.
In the cationic complex present in the title compound, chloro­[2‐(4‐imidazolyl‐κN1)­ethyl­amine‐κN](1,10‐phenanthroline‐κ2N,N′)copper(II) chloride monohydrate, [CuCl(C5H9­N3)­(C12H8N2)]Cl·H2O, the metal centre adopts a five‐coordinate geometry, ligated by the two phenanthroline N atoms, two amine N atoms of the hist­amine ligand (one aliphatic and one from the imidazole ring) and a chloro ligand. The geometry around the Cu atom is a distorted compressed trigonal bipyramid, with one phenanthroline N and one imidazole N atom in the axial positions, and the other phenanthroline N atom, the histamine amine N atom and the chloro ligand in the equatorial positions. The structure includes an uncoordinated water mol­ecule, and a Cl ion to complete the charge. The water mol­ecule is hydrogen bonded to both Cl ions (coordinated and uncoordinated), and exhibits a close Cu⋯H contact in the equatorial plane of the bipyramid.  相似文献   

16.
The two new title complexes, [Mn(C5H3N6)2(H2O)2] and [Zn(C5H3N6)2(H2O)2], are isomorphous. In both compounds, the metal atom is located on an inversion center and is coordinated by four N atoms from two 5‐(pyrazin‐2‐yl)‐1H‐tetra­zolate anions in the basal plane and by two O atoms of water ligands in the apical positions to form a distorted octa­hedral geometry. Inter­molecular hydrogen‐bond inter­actions between the uncoordinated N atoms of the tetra­zolate anions and the H atoms of the water mol­ecules lead to the formation of a three‐dimensional network.  相似文献   

17.
Azido Complexes of Zirconium: ZrCl3N3, [ZrCl4N3]22?, [ZrCl4(N3)2]2?; Crystal Structure of (PPh4)2 [ZrCl4N3]2 Highly explosive ZrCl3N3 is formed by the reaction of ZrCl4 with iodine azide in dichloromethane suspension. According to the i.r. spectra, the compound is polymeric by azide and chlorine bridges. Zirconium tetrachloride reacts with one and two moles of tetraphenylphosphonium azide respectively, forming the thermally and mechanically stable complexes (PPh4)2[ZrCl4N3]2 and (PPh4)2[ZrCl4(N3)2]. The crystal structure of (PPh4)2[ZrCl4N3]2 was determined by X-ray methods (1942 reflexions, R = 6.5%). The complex crystallizes in the monoclinic space group P21/n with two formula units per unit cell. The structure consists of tetraphenylphosphonium cations and dimeric anions [ZrCl4N3]22?, in which the Zr atoms are linked by the α-N atoms of the azide groups, forming a centrosymmetric Zr2N2 ring with symmetry D2h. According to the i.r. spectra, the azide groups in the complex (PPh4)2[ZrCl4(N3)2] are covalently bonded at the Zr atom in trans positions.  相似文献   

18.
The new complex, cis‐β‐[Cr(2,2,3‐tet)(N3)2]Br (2,2,3‐tet = 1,4,7,11‐tetraazaundecane), was prepared and its structure was determined by single‐crystal X‐ray diffraction. The chromium(III) atom is in a distorted octahedral environment coordinated by four nitrogen atoms of 2,2,3‐tet and two azido ligands in a cis‐β arrangement, with bent Cr–N3 linkages at the coordinating azide nitrogen atoms. The mean Cr–N(2,2,3‐tet) and Cr–N(azide) bond lengths are 2.084(5) and 2.021(5) Å, respectively. The crystal structure is stabilized by ionic interactions, supported by N–H ··· N(azide) and N–H ··· Br hydrogen bonds. The IR and electronic spectroscopic properties are also discussed.  相似文献   

19.
Synthesis and single crystal X-ray diffraction study were carried for compound {[Cu(C11H16N4)2(N3)](ClO4)} · H2O (I). The structure is molecular, and the Cu2+ ion is in a five-coordinated compressed trigonal bipyramid environment. Copper ion is bound to five N atoms, in which four N atoms are from two chlelating ligands 2-(piperidin-1-ylmethyl)pyridine and the fifth N donor is from a monodentate azido ligand. The complex cations [Cu(C11H16N4)2(N3)]+, the perchlorate anions, and solvent water molecules are further joined into three dimensional supramolecular networks by rich hydrogen bonds including strong O-H…N between solvent water and azide ion and O-H…O between solvent water and perchlorate ion, and weak hydrogen bonds C-H…O, and weak bifurcated hydrogen bonds C-H/C-H…N in which N atom of azide ion serving as bifurcated acceptor and two C-H groups as donors.  相似文献   

20.
The title compound, [Ag2(C6H4N4)(N3)]n, was obtained under hydrothermal conditions at 433 K. The asymmetric unit of the orthorhombic space group (Pna21) consists of two Ag+ cations, an anionic 5‐(pyridin‐4‐yl)tetrazolide (4‐ptz) ligand and an anionic azide ligand. Both Ag+ centres are coordinated by four N atoms, forming a distorted tetrahedral coordination environment. When all the component ions are viewed as 4‐connected nodes, the whole three‐dimensional network can be regarded topologically as a new kind of 4,4,4,4‐connected net with the Schläfli symbol (4.85)(42.84)(43.83)2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号