首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High dimensional atomic states play a relevant role in a broad range of quantum fields, ranging from atomic and molecular physics to quantum technologies. The D-dimensional hydrogenic system (i.e., a negatively-charged particle moving around a positively charged core under a Coulomb-like potential) is the main prototype of the physics of multidimensional quantum systems. In this work, we review the leading terms of the Heisenberg-like (radial expectation values) and entropy-like (Rényi, Shannon) uncertainty measures of this system at the limit of high D. They are given in a simple compact way in terms of the space dimensionality, the Coulomb strength and the state’s hyperquantum numbers. The associated multidimensional position–momentum uncertainty relations are also revised and compared with those of other relevant systems.  相似文献   

2.
Although the sizes of business firms have been a subject of intensive research, the definition of a “size” of a firm remains unclear. In this study, we empirically characterize in detail the scaling relations between size measures of business firms, analyzing them based on allometric scaling. Using a large dataset of Japanese firms that tracked approximately one million firms annually for two decades (1994–2015), we examined up to the trivariate relations between corporate size measures: annual sales, capital stock, total assets, and numbers of employees and trading partners. The data were examined using a multivariate generalization of a previously proposed method for analyzing bivariate scalings. We found that relations between measures other than the capital stock are marked by allometric scaling relations. Power–law exponents for scalings and distributions of multiple firm size measures were mostly robust throughout the years but had fluctuations that appeared to correlate with national economic conditions. We established theoretical relations between the exponents. We expect these results to allow direct estimation of the effects of using alternative size measures of business firms in regression analyses, to facilitate the modeling of firms, and to enhance the current theoretical understanding of complex systems.  相似文献   

3.
The Khinchin–Shannon generalized inequalities for entropy measures in Information Theory, are a paradigm which can be used to test the Synergy of the distributions of probabilities of occurrence in physical systems. The rich algebraic structure associated with the introduction of escort probabilities seems to be essential for deriving these inequalities for the two-parameter Sharma–Mittal set of entropy measures. We also emphasize the derivation of these inequalities for the special cases of one-parameter Havrda–Charvat’s, Rényi’s and Landsberg–Vedral’s entropy measures.  相似文献   

4.
Many visual representations, such as volume-rendered images and metro maps, feature a noticeable amount of information loss due to a variety of many-to-one mappings. At a glance, there seem to be numerous opportunities for viewers to misinterpret the data being visualized, hence, undermining the benefits of these visual representations. In practice, there is little doubt that these visual representations are useful. The recently-proposed information-theoretic measure for analyzing the cost–benefit ratio of visualization processes can explain such usefulness experienced in practice and postulate that the viewers’ knowledge can reduce the potential distortion (e.g., misinterpretation) due to information loss. This suggests that viewers’ knowledge can be estimated by comparing the potential distortion without any knowledge and the actual distortion with some knowledge. However, the existing cost–benefit measure consists of an unbounded divergence term, making the numerical measurements difficult to interpret. This is the second part of a two-part paper, which aims to improve the existing cost–benefit measure. Part I of the paper provided a theoretical discourse about the problem of unboundedness, reported a conceptual analysis of nine candidate divergence measures for resolving the problem, and eliminated three from further consideration. In this Part II, we describe two groups of case studies for evaluating the remaining six candidate measures empirically. In particular, we obtained instance data for (i) supporting the evaluation of the remaining candidate measures and (ii) demonstrating their applicability in practical scenarios for estimating the cost–benefit of visualization processes as well as the impact of human knowledge in the processes. The real world data about visualization provides practical evidence for evaluating the usability and intuitiveness of the candidate measures. The combination of the conceptual analysis in Part I and the empirical evaluation in this part allows us to select the most appropriate bounded divergence measure for improving the existing cost–benefit measure.  相似文献   

5.
Ordinal patterns classifying real vectors according to the order relations between their components are an interesting basic concept for determining the complexity of a measure-preserving dynamical system. In particular, as shown by C. Bandt, G. Keller and B. Pompe, the permutation entropy based on the probability distributions of such patterns is equal to Kolmogorov–Sinai entropy in simple one-dimensional systems. The general reason for this is that, roughly speaking, the system of ordinal patterns obtained for a real-valued “measuring arrangement” has high potential for separating orbits. Starting from a slightly different approach of A. Antoniouk, K. Keller and S. Maksymenko, we discuss the generalizations of ordinal patterns providing enough separation to determine the Kolmogorov–Sinai entropy. For defining these generalized ordinal patterns, the idea is to substitute the basic binary relation ≤ on the real numbers by another binary relation. Generalizing the former results of I. Stolz and K. Keller, we establish conditions that the binary relation and the dynamical system have to fulfill so that the obtained generalized ordinal patterns can be used for estimating the Kolmogorov–Sinai entropy.  相似文献   

6.
Thermodynamic uncertainty relations (TURs) represent one of the few broad-based and fundamental relations in our toolbox for tackling the thermodynamics of nonequilibrium systems. One form of TUR quantifies the minimal energetic cost of achieving a certain precision in determining a nonequilibrium current. In this initial stage of our research program, our goal is to provide the quantum theoretical basis of TURs using microphysics models of linear open quantum systems where it is possible to obtain exact solutions. In paper [Dong et al., Entropy 2022, 24, 870], we show how TURs are rooted in the quantum uncertainty principles and the fluctuation–dissipation inequalities (FDI) under fully nonequilibrium conditions. In this paper, we shift our attention from the quantum basis to the thermal manifests. Using a microscopic model for the bath’s spectral density in quantum Brownian motion studies, we formulate a “thermal” FDI in the quantum nonequilibrium dynamics which is valid at high temperatures. This brings the quantum TURs we derive here to the classical domain and can thus be compared with some popular forms of TURs. In the thermal-energy-dominated regimes, our FDIs provide better estimates on the uncertainty of thermodynamic quantities. Our treatment includes full back-action from the environment onto the system. As a concrete example of the generalized current, we examine the energy flux or power entering the Brownian particle and find an exact expression of the corresponding current–current correlations. In so doing, we show that the statistical properties of the bath and the causality of the system+bath interaction both enter into the TURs obeyed by the thermodynamic quantities.  相似文献   

7.
In the thermodynamic equilibrium of dipolar-coupled spin systems under the influence of a Dzyaloshinskii–Moriya (D–M) interaction along the z-axis, the current study explores the quantum-memory-assisted entropic uncertainty relation (QMA-EUR), entropy mixedness and the concurrence two-spin entanglement. Quantum entanglement is reduced at increased temperature values, but inflation uncertainty and mixedness are enhanced. The considered quantum effects are stabilized to their stationary values at high temperatures. The two-spin entanglement is entirely repressed if the D–M interaction is disregarded, and the entropic uncertainty and entropy mixedness reach their maximum values for equal coupling rates. Rather than the concurrence, the entropy mixedness can be a proper indicator of the nature of the entropic uncertainty. The effect of model parameters (D–M coupling and dipole–dipole spin) on the quantum dynamic effects in thermal environment temperature is explored. The results reveal that the model parameters cause significant variations in the predicted QMA-EUR.  相似文献   

8.
Deng entropy and extropy are two measures useful in the Dempster–Shafer evidence theory (DST) to study uncertainty, following the idea that extropy is the dual concept of entropy. In this paper, we present their fractional versions named fractional Deng entropy and extropy and compare them to other measures in the framework of DST. Here, we study the maximum for both of them and give several examples. Finally, we analyze a problem of classification in pattern recognition in order to highlight the importance of these new measures.  相似文献   

9.
The spreading of the quantum-mechanical probability cloud for the ground state of the Morse and modified Pöschl–Teller potentials, which controls the chemical and physical properties of some molecular systems, is studied in position and momentum space by means of global (Shannon's information entropy, variance) and local (Fisher's information) information-theoretic measures. We establish a general relation between variance and Fisher's information, proving that, in the case of a real-valued and symmetric wavefunction, the well-known Cramer–Rao and Heisenberg uncertainty inequalities are equivalent. Finally, we discuss the asymptotics of all three information measures, showing that the ground state of these potentials saturates all the uncertainty relations in an appropriate limit of the parameter.  相似文献   

10.
Following Smolin, we proceed to unification of general relativity and quantum theory by operating solely with events, i.e., without appealing to physical systems and space-time. The universe is modelled as a dendrogram (finite tree) expressing the hierarchic relations between events. This is the observational (epistemic) model; the ontic model is based on p-adic numbers (infinite trees). Hence, we use novel mathematics: not only space-time but even real numbers are not in use. Here, the p-adic space (which is zero-dimensional) serves as the base for the holographic image of the universe. In this way our theory is connected with p-adic physics; in particular, p-adic string theory and complex disordered systems (p-adic representation of the Parisi matrix for spin glasses). Our Dendrogramic-Holographic (DH) theory matches perfectly with the Mach’s principle and Brans–Dicke theory. We found a surprising informational interrelation between the fundamental constants, h, c, G, and their DH analogues, h(D), c(D), G(D). DH theory is part of Wheeler’s project on the information restructuring of physics. It is also a step towards the Unified Field theory. The universal potential V is nonlocal, but this is relational DH nonlocality. V can be coupled to the Bohm quantum potential by moving to the real representation. This coupling enhances the role of the Bohm potential.  相似文献   

11.
Based on elastic mechanics, the fluid–structure coupling theory and the finite element method, a high-speed railway wheel-rail rolling-aerodynamic noise model is established to realize the combined simulation and prediction of the vibrations, rolling noise and aerodynamic noise in wheel-rail systems. The field test data of the Beijing–Shenyang line are considered to verify the model reliability. In addition, the directivity of each sound source at different frequencies is analyzed. Based on this analysis, noise reduction measures are proposed. At a low frequency of 300 Hz, the wheel-rail area mainly contributes to the aerodynamic noise, and as the frequency increases, the wheel-rail rolling noise becomes dominant. When the frequency is less than 1000 Hz, the radiated noise fluctuates around the cylindrical surface, and the directivity of the sound is ambiguous. When the frequency is in the middle- and high-frequency bands, exceeding 1000 Hz, both the rolling and total noise exhibit a notable directivity in the directions of 20–30° and 70–90°, and thus, noise reduction measures can be implemented in these directions.  相似文献   

12.
In this paper, we study the concomitants of dual generalized order statistics (and consequently generalized order statistics) when the parameters γ1,,γn are assumed to be pairwise different from Huang–Kotz Farlie–Gumble–Morgenstern bivariate distribution. Some useful recurrence relations between single and product moments of concomitants are obtained. Moreover, Shannon’s entropy and the Fisher information number measures are derived. Finally, these measures are extensively studied for some well-known distributions such as exponential, Pareto and power distributions. The main motivation of the study of the concomitants of generalized order statistics (as an important practical kind to order the bivariate data) under this general framework is to enable researchers in different fields of statistics to use some of the important models contained in these generalized order statistics only under this general framework. These extended models are frequently used in the reliability theory, such as the progressive type-II censored order statistics.  相似文献   

13.
Finding the proper entropy-like Lyapunov functional associated with the inelastic Boltzmann equation for an isolated freely cooling granular gas is a still unsolved challenge. The original H-theorem hypotheses do not fit here and the H-functional presents some additional measure problems that are solved by the Kullback–Leibler divergence (KLD) of a reference velocity distribution function from the actual distribution. The right choice of the reference distribution in the KLD is crucial for the latter to qualify or not as a Lyapunov functional, the asymptotic “homogeneous cooling state” (HCS) distribution being a potential candidate. Due to the lack of a formal proof far from the quasielastic limit, the aim of this work is to support this conjecture aided by molecular dynamics simulations of inelastic hard disks and spheres in a wide range of values for the coefficient of restitution (α) and for different initial conditions. Our results reject the Maxwellian distribution as a possible reference, whereas they reinforce the HCS one. Moreover, the KLD is used to measure the amount of information lost on using the former rather than the latter, revealing a non-monotonic dependence with α.  相似文献   

14.
The inverted Topp–Leone distribution is a new, appealing model for reliability analysis. In this paper, a new distribution, named new exponential inverted Topp–Leone (NEITL) is presented, which adds an extra shape parameter to the inverted Topp–Leone distribution. The graphical representations of its density, survival, and hazard rate functions are provided. The following properties are explored: quantile function, mixture representation, entropies, moments, and stress–strength reliability. We plotted the skewness and kurtosis measures of the proposed model based on the quantiles. Three different estimation procedures are suggested to estimate the distribution parameters, reliability, and hazard rate functions, along with their confidence intervals. Additionally, stress–strength reliability estimators for the NEITL model were obtained. To illustrate the findings of the paper, two real datasets on engineering and medical fields have been analyzed.  相似文献   

15.
Although most of the early research studies on fractional-order systems were based on the Caputo or Riemann–Liouville fractional-order derivatives, it has recently been proven that these methods have some drawbacks. For instance, kernels of these methods have a singularity that occurs at the endpoint of an interval of definition. Thus, to overcome this issue, several new definitions of fractional derivatives have been introduced. The Caputo–Fabrizio fractional order is one of these nonsingular definitions. This paper is concerned with the analyses and design of an optimal control strategy for a Caputo–Fabrizio fractional-order model of the HIV/AIDS epidemic. The Caputo–Fabrizio fractional-order model of HIV/AIDS is considered to prevent the singularity problem, which is a real concern in the modeling of real-world systems and phenomena. Firstly, in order to find out how the population of each compartment can be controlled, sensitivity analyses were conducted. Based on the sensitivity analyses, the most effective agents in disease transmission and prevalence were selected as control inputs. In this way, a modified Caputo–Fabrizio fractional-order model of the HIV/AIDS epidemic is proposed. By changing the contact rate of susceptible and infectious people, the atraumatic restorative treatment rate of the treated compartment individuals, and the sexual habits of susceptible people, optimal control was designed. Lastly, simulation results that demonstrate the appropriate performance of the Caputo–Fabrizio fractional-order model and proposed control scheme are illustrated.  相似文献   

16.
Quantum circuits have been widely used as a platform to simulate generic quantum many-body systems. In particular, random quantum circuits provide a means to probe universal features of many-body quantum chaos and ergodicity. Some such features have already been experimentally demonstrated in noisy intermediate-scale quantum (NISQ) devices. On the theory side, properties of random quantum circuits have been studied on a case-by-case basis and for certain specific systems, and a hallmark of quantum chaos—universal Wigner–Dyson level statistics—has been derived. This work develops an effective field theory for a large class of random quantum circuits. The theory has the form of a replica sigma model and is similar to the low-energy approach to diffusion in disordered systems. The method is used to explicitly derive the universal random matrix behavior of a large family of random circuits. In particular, we rederive the Wigner–Dyson spectral statistics of the brickwork circuit model by Chan, De Luca, and Chalker [Phys. Rev. X 8, 041019 (2018)] and show within the same calculation that its various permutations and higher-dimensional generalizations preserve the universal level statistics. Finally, we use the replica sigma model framework to rederive the Weingarten calculus, which is a method of evaluating integrals of polynomials of matrix elements with respect to the Haar measure over compact groups and has many applications in the study of quantum circuits. The effective field theory derived here provides both a method to quantitatively characterize the quantum dynamics of random Floquet systems (e.g., calculating operator and entanglement spreading) and a path to understanding the general fundamental mechanism behind quantum chaos and thermalization in these systems.  相似文献   

17.
18.
A novel uncertainty relation for errors of general quantum measurement is presented. The new relation, which is presented in geometric terms for maps representing measurement, is completely operational and can be related directly to tangible measurement outcomes. The relation violates the naïve bound /2 for the position-momentum measurement, whilst nevertheless respecting Heisenberg’s philosophy of the uncertainty principle. The standard Kennard–Robertson uncertainty relation for state preparations expressed by standard deviations arises as a corollary to its special non-informative case. For the measurement on two-state quantum systems, the relation is found to offer virtually the tightest bound possible; the equality of the relation holds for the measurement performed over every pure state. The Ozawa relation for errors of quantum measurements will also be examined in this regard. In this paper, the Kolmogorovian measure-theoretic formalism of probability—which allows for the representation of quantum measurements by positive-operator valued measures (POVMs)—is given special attention, in regard to which some of the measure-theory specific facts are remarked along the exposition as appropriate.  相似文献   

19.
The Granger causality test is essential for detecting lead–lag relationships between time series. Traditionally, one uses a linear version of the test, essentially based on a linear time series regression, itself being based on autocorrelations and cross-correlations of the series. In the present paper, we employ a local Gaussian approach in an empirical investigation of lead–lag and causality relations. The study is carried out for monthly recorded financial indices for ten countries in Europe, North America, Asia and Australia. The local Gaussian approach makes it possible to examine lead–lag relations locally and separately in the tails and in the center of the return distributions of the series. It is shown that this results in a new and much more detailed picture of these relationships. Typically, the dependence is much stronger in the tails than in the center of the return distributions. It is shown that the ensuing nonlinear Granger causality tests may detect causality where traditional linear tests fail.  相似文献   

20.
Information theory can be used to analyze the cost–benefit of visualization processes. However, the current measure of benefit contains an unbounded term that is neither easy to estimate nor intuitive to interpret. In this work, we propose to revise the existing cost–benefit measure by replacing the unbounded term with a bounded one. We examine a number of bounded measures that include the Jenson–Shannon divergence, its square root, and a new divergence measure formulated as part of this work. We describe the rationale for proposing a new divergence measure. In the first part of this paper, we focus on the conceptual analysis of the mathematical properties of these candidate measures. We use visualization to support the multi-criteria comparison, narrowing the search down to several options with better mathematical properties. The theoretical discourse and conceptual evaluation in this part provides the basis for further data-driven evaluation based on synthetic and experimental case studies that are reported in the second part of this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号