首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Mendeleev Communications》2020,30(3):318-319
  1. Download : Download high-res image (132KB)
  2. Download : Download full-size image
  相似文献   

2.
A formal [4+2] cycloaddition of α,α′‐dichloro‐ortho‐xylenes with various alkynes has been developed using a low‐valent cobalt catalyst. The transformation has a wide substrate scope and high functional‐group tolerance and led to 1,4‐dihydronaphthalenes. The formed cycloadducts were easily aromatized with MnO2 under air. A mechanistic investigation suggests that the transformation proceeds through a benzyl cobaltation of alkyne, not the classical Diels–Alder reaction of ortho‐quinodimethanes. This methodology provides a straightforward and streamlined access to linearly expanded π‐conjugated aromatics.  相似文献   

3.
4.
Three‐ring circus : An expedient route to tricyclic fused 2‐trimethylsilyl‐3‐aminopyridines exhibiting unprecedented skeletons is described. The key step is a very efficient cobalt‐catalyzed [2+2+2] cycloaddition of a polyunsaturated compound displaying an ynamide, an alkyne, and a nitrile functionality (see picture).

  相似文献   


5.
Transition metal-catalyzed [4+2+1] reactions of dienes (or diene derivatives such as vinylallenes), alkynes/alkenes, and CO (or carbenes) are expected to be the most straightforward approach to synthesize challenging seven-membered ring compounds, but so far only limited successes have been realized. Here, an unexpected three-component [4+2+1] reaction between two vinylallenes and CO was discovered to give highly functionalized tropone derivatives under mild conditions, where one vinylallene acts as a C4 synthon, the other vinylallene as a C2 synthon, and CO as a C1 synthon. It was proposed that this reaction occurred via oxidative cyclization of the diene part of one vinylallene molecule, followed by insertion of the terminal alkene part of the allene moiety in another vinylallene, into the Rh−C bond of five-membered rhodacycle. Then, CO insertion and reductive elimination gave the [4+2+1] cycloadduct. Further experimental exploration of why ene/yne-vinylallenes and CO gave monocyclic tropone derivatives instead of 6/7-bicyclic ring products were reported here.  相似文献   

6.
Phosphine‐stabilized germaborenes featuring an unprecedented Ge=B double bond with short B???Ge contacts of 1.886(2) ( 4 ) and 1.895(3) Å ( 5 ) were synthesized starting from an intramolecular germylene–phosphine Lewis pair ( 1 ). After oxidative addition of boron trihalides BX3 (X=Cl, Br), the addition products were reduced with magnesium and catalytic amounts of anthracene to give the borylene derivatives in yields of 78 % ( 4 ) and 57 % ( 5 ). These halide‐substituted germaborenes were characterized by single‐crystal structure analysis, and the electronic structures were studied by quantum‐chemical calculations. According to an NBO NRT analysis, the dominating Lewis structure contains a Ge=B double bond. The germaborenes undergo a reversible, photochemically initiated [2+2] cycloaddition with the phenyl moiety of a terphenyl substituent at room temperature, forming a complex heterocyclic structure with GeIV in a strongly distorted coordination environment.  相似文献   

7.
《化学:亚洲杂志》2017,12(1):168-173
A catalytic [2+2+2] cyclotrimerization of unactivated internal alkynes providing cyclotrimerization products in excellent yields with high regioselectivity is described. The transformation is accomplished by using a simple catalytic mixture comprising Ni(acac)2, an imidazolium salt and a Grignard reagent at room temperature or 60 °C for 20 min or 1 h.  相似文献   

8.
New bidentate Schiff-base ligands 2-(2,4-di-p-tolyl-3-azabicyclo[3.3.1]nonan-9-ylidene)hydrazinecarbothioamide HL1 and 2-(2,4-di-p-tolyl-3-azabicyclo[3.3.1]nonan-9-ylidene)hydrazinecarboxamide HL2 were synthesized from the condensation of 2,4-di-p-tolyl-3-azabicyclo[3.3.1]nonan-9-one with thiosemicarbazide and semicarbazide, respectively. Homoleptic complexes of these ligands, of general formula K[Cr(L n )2Cl2], K2[Mn(L n )2Cl2], K2[Fe(L1)2Cl2] and [M(L n )2] (where M = Co(II), Ni(II) Cu(II), Zn(II), Cd(II), and Hg(II) ions; n = 1 or 2) are reported. The mode of bonding and overall geometry of the complexes were determined through IR, UV-Vis, NMR and mass spectral studies, magnetic moment measurements, elemental analysis, metal content, and conductance. These studies revealed octahedral geometry for Cr(III), Mn(II), and Fe(II) complexes, square planar for Cu(II), Co(II), and Ni(II) complexes and tetrahedral for Zn(II), Cd(II), and Hg(II) complexes.  相似文献   

9.
K. Prabha 《合成通讯》2013,43(15):2277-2289
The reaction of 4-chloro-2-methylquinolines and 1-naphthylamine under neat conditions yielded 2-methyl-N-(1-naphthyl)quinolin-4-amines. These potential intermediates on reaction with aliphatic and aromatic carboxylic acids yielded the respective 7-alkyl and -aryl substituted benzo[h]naphtho[1,2-b][1,6]naphthyridines. The highly deshielded protons in the final compounds were assigned on the basis of 2D NMR studies.  相似文献   

10.
A series of novel 9-alkoxy-6,7-dihydro-2H-benzo[c][1,2,4]triazolo[4,3-a]azepin-3(5H)-one derivatives was designed and synthesized starting from 2,3,4,5-tetrahydro-7-hydroxy-1H-2-benzazepin-1-one. The structures of these compounds were confirmed by mass, 1H NMR infrared spectra, and elemental analysis. Their anticonvulsant activity was evaluated by maximal electroshock (MES) test, and their neurotoxic effects were determined by the rotarod neurotoxicity test. The results shown that 3k was the most active compound with median effective dose (ED50) of 27.3 mg/kg, median toxicity dose (TD50) of 118.3 mg/kg, and protective index (PI) of 4.3. Possible structure–activity relationship is discussed.  相似文献   

11.
12.
《中国化学》2018,36(5):421-429
Reported herein is an example of highly regio‐, diastereo‐ and enantioselective Cu(I)‐catalyzed intermolecular [3+2] cycloaddition reaction of α‐substituted iminoesters with α‐trifluoromethyl α,β‐unsaturated esters. This novel strategy provided a facile access to pyrrolidines with two skipped (aza)quaternary stereocenters including a CF3 all‐carbon quaternary stereocenter. A broad substrate scope was observed and high yields (up to 94%) with excellent diastereoselectivity (up to >20 : 1 d.r.) and enantioselectivity (up to 98% ee) were obtained.  相似文献   

13.
The 1,2-bridged tricyclic cyclopropene, tricyclo[3.2.2.02,4]nona-2(4),6-diene (1), has been synthesized by the elimination of 2-bromo-4-chlorotricyclo[3.2.2.02,4]-non-6-ene (5). Cyclopropene 1 will undergo different isomerizations in ether solution and in neat conditions. Compound 1 rearranged to an anti-Bredt compound 4 via diradical mechanism in ether and tricyclic compound 6 via vinyl carbene mechanism in neat conditions. Compound 1 can be trapped with DPIBF at different temperatures yielding different results: the exo-endo adduct 2 (exo-addition from the view of the cyclopropene and endo-addition from the view of bicyclo[2.2.2]octene) is a sole product at 0°C by slowly addition of methyllithium, and the exo-endo adduct 2, endo-endo adduct 9, anti-Bredt adduct 3, and styrene 8 are isolated at ether refluxing temperature. Styrene 8 is proposed to be formed from endo-endo adduct 9 by diradical mechanism. The chemistry of exo-endo adduct 2 and endo-endo adduct 9 is as well studied. The exo-endo adduct 2 undergoes hydration in trifluoroacetic acid to generate 1,3-cis-diol 11 followed by eliminations of water and formaldehyde to give naphthalene 12. The endo-endo adduct 9 reacts with water in tetrahydrofuran-containing silica gel to yield 1,4-cis-diol 10. Both 9 and 10 react with trifluoroacetic acid to form trans-3-hydroxy trifluoroacetate 13. Compound 13 will undergo hydrolysis and isomerization to generate 1,3-cis-diol 11 in trifluoroacetic acid.  相似文献   

14.
2-Thioxo-1,2-dihydropyridine derivatives 2a, 2b were reacted with methyl iodide to give 2-methylthiopyridines 3a, 3b, which were reacted with hydrazine hydrate to produce 3-aminopyrazolo[5,4-b]pyridines 4a, 4b. Compounds 4a, 4b were diazotized to afford the corresponding diazonium salts 5a, 5b, which were reacted with some active methylene compounds 6a-6h to give the corresponding pyrido[2′,3′ : 3,4]pyrazole[5,1-c][1,2,4]triazines 7-14.  相似文献   

15.
Two series of 7‐arylazo‐7H‐3‐(2‐methyl‐1H‐indol‐3‐yl)pyrazolo[5,1‐c][1,2,4]triazol‐6(5H)‐ones 4 and 7‐arylhydrazono‐7H‐3‐(2‐methyl‐1H‐indol‐3‐yl)‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazines 7 were prepared via reactions of 4‐amino‐3‐mercapto‐5‐(2‐methyl‐1H‐indol‐3‐yl)‐1,2,4‐triazole 1 with ethyl arylhydrazono‐chloroacetate 2 and N‐aryl‐2‐oxoalkanehydrazonoyl halides 5 , respectively. A possible mechanism is proposed to account for the formation of the products. The biological activity of some of these products was also evaluated.  相似文献   

16.
The Structures of some Hexaammine Metal(II) Halides of 3 d Metals: [V(NH3)6]I2, [Cr(NH3)6]I2, [Mn(NH3)6]Cl2, [Fe(NH3)6]Cl2, [Fe(NH3)6]Br2, [Co(NH3)6]Br2 and [Ni(NH3)6]Cl2 Crystals of yellow [V(NH3)6]I2 and green [Cr(NH3)6]I2 were obtained by the reaction of VI2 and CrI2 with liquid ammonia at room temperature. Colourless crystals of [Mn(NH3)6]Cl2 were obtained from Mn and NH4Cl in supercritical ammonia. Colourless transparent crystals of [Fe(NH3)6]Cl2 and [Fe(NH3)6]Br2 were obtained by the reaction of FeCl2 and FeBr2 with supercritical ammonia at 400°C. Under the same conditions orange crystals of [Co(NH3)6]Br2 were obtained from [Co2(NH2)3(NH3)6]Br3. Purple crystals of [Ni(NH3)6]Cl2 were obtained by the reaction of NiCl2 · 6H2O and NH4Cl with aqueous NH3 solution. The structures of the isotypic compounds (Fm3 m, Z = 4) were determined from single crystal diffractometer data (see “Inhaltsübersicht”). All compounds crystallize in the K2[PtCl6] structure type. In these compounds the metal ions have high-spin configuration. The orientation of the dynamically disordered hydrogen atoms of the ammonia ligands is discussed.  相似文献   

17.
A series of new 2‐substituted 3‐(4‐chlorophenyl)‐5,8,9‐trimethylthieno[3′,2′: 5,6]pyrido[4,3‐d]pyrimidin‐4(3H)‐ones 8 were synthesized via an aza‐Wittig reaction. Phosphoranylideneamino derivatives 6a or 6b reacted with 4‐chlorophenyl isocyanate to give carbodiimide derivatives 7a or 7b , respectively, which were further treated with amines or phenols to give compounds 8 in the presence of a catalytic amount of EtONa or K2CO3. The structure of 2‐(4‐chlorophenoxy)‐3‐(4‐chlorophenyl)‐5,8,9‐trimethylthieno[3′,2′: 5,6]pyrido[4,3‐d]pyrimidin‐4(3H)‐one ( 8j ) was comfirmed by X‐ray analysis.  相似文献   

18.
A series of new polyamides containing both sulfone and oxyethylene moieties in the polymer chain was prepared by the direct polycondensation of the diamine monomer 2,2‐bis[4‐[2‐(4‐aminophenoxy)ethoxy]phenyl]sulfone (BAEPS) and various aromatic dicarboxylic acids in N‐methyl‐2‐pyrrolidinone (NMP) using triphenyl phosphite and pyridine as condensing agents. Polymers were produced with inherent viscosities of 0.30–0.60 dl/g and identified by elemental analysis, and infrared and nuclear magnetic resonance spectra. Most of the polymers were readily dissolved in polar solvents such as NMP, dimethylsulfoxide, N,N‐dimethylacetamide, N,N‐dimethylformamide and m‐cresol at room temperature. Polymers containing rigid and symmetric p‐phenylene, naphthalene and p‐biphenylene moieties revealed a crystalline nature and showed no solubility in organic solvents. These polyamides had 10% weight loss temperatures ranging between 423 and 465 °C in nitrogen atmosphere and glass transition temperatures between 170 and 305 °C. The polymers with crystallinity nature exhibited melting endotherms (Tm) below 386 °C in differential scanning calorimetry trace. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
Heptalenecarbaldehydes 1 / 1′ as well as aromatic aldehydes react with 3‐(dicyanomethylidene)‐indan‐1‐one in boiling EtOH and in the presence of secondary amines to yield 3‐(dialkylamino)‐1,2‐dihydro‐9‐oxo‐9H‐indeno[2,1‐c]pyridine‐4‐carbonitriles (Schemes 2 and 4, and Fig. 1). The 1,2‐dihydro forms can be dehydrogenated easily with KMnO4 in acetone at 0° (Scheme 3) or chloranil (=2,3,5,6‐tetrachlorocyclohexa‐2,5‐diene‐1,4‐dione) in a ‘one‐pot’ reaction in dioxane at ambient temperature (Table 1). The structures of the indeno[2,1‐c]pyridine‐4‐carbonitriles 5′ and 6a have been verified by X‐ray crystal‐structure analyses (Fig. 2 and 4). The inherent merocyanine system of the dihydro forms results in a broad absorption band in the range of 515–530 nm in their UV/VIS spectra (Table 2 and Fig. 3). The dehydrogenated compounds 5, 5′ , and 7a – 7f exhibit their longest‐wavelength absorption maximum at ca. 380 nm (Table 2). In contrast to 5 and 5′, 7a – 7f in solution exhibit a blue‐green fluorescence with emission bands at around 460 and 480 nm (Table 4 and Fig. 5).  相似文献   

20.
The synthesis of tropanes via a microwave‐assisted, stereoselective 6π‐electrocyclic ring‐opening/ Huisgen [3+2]‐cycloaddition cascade of cyclopropanated pyrrole and furan derivatives with electron‐deficient dipolarophiles is demonstrated. Starting from furans or pyrroles, 8‐aza‐ and 8‐oxabicyclo[3.2.1]octanes are accessible in two steps in dia‐ and enantioselective pure form, being versatile building blocks for the synthesis of pharmaceutically relevant targets, especially for new cocaine analogues bearing various substituents at the C‐6/C‐7 positions of the tropane ring system. Moreover, the 2‐azabicyclo[2.2.2]octane core (isoquinuclidines), being prominently represented in many natural and pharmaceutical products, is accessible via this approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号