首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of amide bonds is one of the most stimulating emerging areas in organic and medicinal chemistry. Amides are recognized as central building blocks in a plethora of interesting pharmaceuticals, proteins, peptides, polymers, natural products, functional materials, and biologically relevant carbocyclic or heterocyclic molecules, and they are also found in a variety of industrial fields. Therefore, a review of recent developments and challenges in the formation of amide bonds from carbonyl compounds is particularly important. Herein, we have scrutinized a range of metal‐catalyzed and metal‐free approaches for the synthesis of amides from aldehydes, ketones, and oximes. In addition, this Minireview highlights relevant mechanistic studies, as well as the potential applications of these methods in the synthesis of candidate drug molecules. We hope that the data compiled herein will encourage further progress in this notable area of chemistry research.  相似文献   

2.
The covalent immobilization of peptides, proteins, and other biomolecules to hydrogels provides a biologically mimicking environment for cell and tissue growth. Bioorthogonal chemical reactions can serve as a tool for this, but the paucity of such reactions and mutual incompatibilities limits the number of distinct molecules that can be introduced. We now report that the potassium acyltrifluoroborate (KAT ) amide‐forming ligation is orthogonal to both thiol‐Michael and strain promoted azide alkyne cycloadditions (SPAAC ) and the requisite functional groups – KAT s and hydroxylamines – are stable and compatible to hydrogel formation, protein modification, and post‐assembly immobilization of biomolecules onto hydrogels. In combination these ligations enables stepwise covalent protein immobilization of multiple BSA ‐derivatives onto the hydrogel scaffold regardless of the order of addition.  相似文献   

3.
Peptides consisting of d-amino amides are highly represented among both biologically active natural products and non-natural small molecules used in therapeutic development. Chemical synthesis of d-amino amides most often involves approaches based on enzymatic resolution or fractional recrystallization of their diastereomeric amino acid salt precursors, techniques that produce an equal amount of the l-amino acid. Enantioselective synthesis, however, promises selective and general access to a specific α-amino amide, and may enable efficient peptide synthesis regardless of the availability of the corresponding α-amino acid. This report describes the use of a cinchona alkaloid-catalyzed aza-Henry reaction using bromonitromethane, and the integration of its product with umpolung amide synthesis. The result is a straightforward 3-step protocol beginning from aliphatic aldehydes that provides homologated peptides bearing an aliphatic side chain at the resulting d-α-amino amide.  相似文献   

4.
《Tetrahedron》1986,42(21):6039-6045
The syntheses of several fully protected dipeptide isosteres which incorporate a methylene-oxy bond replacing the amide bond are described. The novel methylene-oxy modification offers a polar, flexible, proteolytically resistant peptide bond surrogate which can be easily incorporated into biologically active peptides. The standard geometries of the trans-amide, methylene-oxy and methylene-thio units are compared, showing a very close geometrical resemblance of the ψ[CH2-0] unit to the amide bond.  相似文献   

5.
The investigation of biological processes by chemical methods, commonly referred to as chemical biology, often requires chemical access to biologically relevant macromolecules such as peptides and proteins. Building upon solid‐phase peptide synthesis, investigations have focused on the development of chemoselective ligation and modification strategies to link synthetic peptides or other functional units to larger synthetic and biologically relevant macromolecules. This Review summarizes recent developments in the field of chemoselective ligation and modification strategies and illustrates their application, with examples ranging from the total synthesis of proteins to the semisynthesis of naturally modified proteins.  相似文献   

6.
Ruthenium-catalysed azide–alkyne cycloaddition (RuAAC) provides access to 1,5-disubstituted 1,2,3-triazole motifs in peptide engineering applications. However, investigation of this motif as a disulfide mimetic in cyclic peptides has been limited, and the structural consequences remain to be studied. We report synthetic strategies to install various triazole linkages into cyclic peptides through backbone cyclisation and RuAAC cross-linking reactions. These linkages were evaluated in four serine protease inhibitors based on sunflower trypsin inhibitor-1. NMR and X-ray crystallography revealed exceptional consensus of bridging distance and backbone conformations (RMSD<0.5 Å) of the triazole linkages compared to the parent disulfide molecules. The triazole-bridged peptides also displayed superior half-lives in liver S9 stability assays compared to disulfide-bridged peptides. This work establishes a foundation for the application of 1,5-disubstituted 1,2,3-triazoles as disulfide mimetics.  相似文献   

7.
The site-specific conjugation of metal chelating systems to biologically relevant molecules is an important contemporary topic in bioinorganic and bioorganometallic chemistry. In this work, we have used the CuI-catalyzed cycloaddition of azides and terminal alkynes to synthesise novel ligand systems, in which the 1,2,3-triazole is an integral part of the metal chelating system. A diverse set of bidentate alkyne building blocks with different aliphatic and aromatic backbones and various donor groups were prepared. The bidentate alkynes were reacted with benzyl azide in the presence of a catalytic amount of CuI to form tridentate model ligands. The chelators were reacted with [ReBr3(CO)3]2- to form well-defined and stable complexes with different overall charges, structures and hydrophilicities. In all cases tridentate coordination of the ligands, including through N3 of the 1,2,3-triazole ring, was observed. The ligand systems could also be quantitatively radiolabelled with the precursor [99 mTc (H2O)3(CO)3]+ at low ligand concentrations. Similarly the alkynes were reacted with an azido thymidine derivative to form a series of compounds, which could be radiolabelled in situ to form single products. Subsequent incubation of the neutral and cationic organometallic 99 mTc thymidine derivatives with human cytosolic thymidine kinase, a key enzyme in tumour proliferation, revealed that only the neutral compounds maintained substrate activity towards the enzyme. Bioconjugation, radiolabelling and enzymatic reactions were successfully performed in a matter of hours. Thus, click chemistry provides an elegant method for rapidly functionalising a biologically relevant molecule with a variety of efficient metal chelators suitable for (radio)labelling with the M(CO)3 core (M=99 mTc, Re), to offer new potential for technetium-99 m in clinical and preclinical tracer development.  相似文献   

8.
Bacterial natural products in general, and non-ribosomally synthesized peptides in particular, are structurally diverse and provide us with a broad range of pharmaceutically relevant bioactivities. Yet, traditional natural product research suffers from rediscovering the same scaffolds and has been stigmatized as inefficient, time-, labour- and cost-intensive. Combinatorial chemistry, on the other hand, can produce new molecules in greater numbers, cheaper and in less time than traditional natural product discovery, but also fails to meet current medical needs due to the limited biologically relevant chemical space that can be addressed. Consequently, methods for the high throughput generation of new natural products would offer a new approach to identifying novel bioactive chemical entities for the hit to lead phase of drug discovery programs. As a follow-up to our previously published proof-of-principle study on generating bipartite type S non-ribosomal peptide synthetases (NRPSs), we now envisaged the de novo generation of non-ribosomal peptides (NRPs) on an unreached scale. Using synthetic zippers, we split NRPSs in up to three subunits and rapidly generated different bi- and tripartite NRPS libraries to produce 49 peptides, peptide derivatives, and de novo peptides at good titres up to 145 mg L−1. A further advantage of type S NRPSs not only is the possibility to easily expand the created libraries by re-using previously created type S NRPS, but that functions of individual domains as well as domain-domain interactions can be studied and assigned rapidly.  相似文献   

9.
Elastin peptides constitute a group of biologically active peptides derived from the fragmentation of insoluble elastin. These molecules, currently termed elastokines, have been shown to interact preferably with the elastin receptor complex. Recent data show that the sialidase activity of the neuraminidase-1 of this receptor is required for these peptides to induce their effects. As lactosylceramide generated at the plasma membrane by desialylation of the ganglioside GM3 can be considered as a second messenger, we feel that this lipidic compound could mimic elastin peptides effects in physiopathological situations.  相似文献   

10.
The 1,2,3-triazole has been successfully utilized as an amide bioisostere in multiple therapeutic contexts. Based on this precedent, triazole analogues derived from VX-809 and VX-770, prominent amide-containing modulators of the cystic fibrosis transmembrane conductance regulator (CFTR), were synthesized and evaluated for CFTR modulation. Triazole 11 , derived from VX-809, displayed markedly reduced efficacy in F508del-CFTR correction in cellular TECC assays in comparison to VX-809. Surprisingly, triazole analogues derived from potentiator VX-770 displayed no potentiation of F508del, G551D, or WT-CFTR in cellular Ussing chamber assays. However, patch clamp analysis revealed that triazole 60 potentiates WT-CFTR similarly to VX-770. The efficacy of 60 in the cell-free patch clamp experiment suggests that the loss of activity in the cellular assay could be due to the inability of VX-770 triazole derivatives to reach the CFTR binding site. Moreover, in addition to the negative impact on biological activity, triazoles in both structural classes displayed decreased metabolic stability in human microsomes relative to the analogous amides. In contrast to the many studies that demonstrate the advantages of using the 1,2,3-triazole, these findings highlight the negative impacts that can arise from replacement of the amide with the triazole and suggest that caution is warranted when considering use of the 1,2,3-triazole as an amide bioisostere.  相似文献   

11.
Ruthenium‐catalysed azide–alkyne cycloaddition (RuAAC) provides access to 1,5‐disubstituted 1,2,3‐triazole motifs in peptide engineering applications. However, investigation of this motif as a disulfide mimetic in cyclic peptides has been limited, and the structural consequences remain to be studied. We report synthetic strategies to install various triazole linkages into cyclic peptides through backbone cyclisation and RuAAC cross‐linking reactions. These linkages were evaluated in four serine protease inhibitors based on sunflower trypsin inhibitor‐1. NMR and X‐ray crystallography revealed exceptional consensus of bridging distance and backbone conformations (RMSD<0.5 Å) of the triazole linkages compared to the parent disulfide molecules. The triazole‐bridged peptides also displayed superior half‐lives in liver S9 stability assays compared to disulfide‐bridged peptides. This work establishes a foundation for the application of 1,5‐disubstituted 1,2,3‐triazoles as disulfide mimetics.  相似文献   

12.
Two 1,2,3-triazole- and amide-incorporated macrocycles have been prepared by 1,3-dipolar cycloaddition of the corresponding dialkyne and diazide precursors. Intramolecular C–H?O hydrogen bonding is introduced to lock the C5–H atoms of the 1,2,3-triazole rings. The binding of the two macrocycles to amide, monosaccharide, and halide derivatives in chloroform or dichloromethane has been investigated. It is revealed that the amide units dominate their binding toward the amide and monosaccharide guests through forming intermolecular hydrogen bonding and 1,2,3-triazole is as weak as an intermolecular hydrogen bonding acceptor, but it forms intermolecular halogen bonding when cooperative effect exists.  相似文献   

13.
Tryptic digestion of the 150-residue human acidic salivary proline-rich protein 1 (PRP-1) generated eight peptides, two of which corresponded to the N-terminal 30-residue segment. In each of the other six tryptic peptides, a consensus repeat with the structure PQGPPQQGG was present. A facile Gln-Gly cleavage between the second and the third residues of the repeat was observed during collision-induced dissociation experiments. We postulate possible mechanisms to account for this reactivity, involving attack on the peptidyl carbonyl group by the Gln sidechain. Significantly, the Gln-Gly cleavage has been shown to be biologically important in the bacterial degradation of PRPs in saliva, generating bacteria-binding Pro-Gln C-termini. We suggest a link between the gas-phase chemistry and the biochemical degradation of these molecules.  相似文献   

14.
The (R-X-R) motif-containing arginine-rich peptides are among the most effective cell-penetrating peptides. The replacement of amide linkages in the (R-X-R) motif by carbamate linkages as in (r-ahx-r)(4) or (r-ahx-r-r-apr-r)(2) increases the efficacy of such oligomers several-fold. Internalization of these oligomers in mammalian cell lines occurs by an energy-independent process. These oligomers show efficient delivery of biologically active plasmid DNA into CHO-K1 cells.  相似文献   

15.
The 1,5-disubstituted tetrazole ring a mimetic of the cis-amide bond is an unique element modifying the ability of peptides to chelate copper(II) ions. The position of the tetrazole ring system in the peptide backbone plays a critical role in the stabilization of the metallopeptide molecule. The insertion of a tetrazole between amide groups leads to enhancing the stability of the complex and to obtaining a very effective peptide chelating agent. These findings can provide important information for modeling biologically relevant peptide–metal binding sites. Some aspects of biological activity of tetrazole modified exogenous opioid peptides in the presence of copper(II) ions are also presented in this review.  相似文献   

16.
Since the pioneering finding by List and Barbas III and their coworkers that L-proline could work as a catalyst in the intermolecular direct aldol reaction, the concept of small organic molecules as catalysts has received great attention. However, new organic molecule which have better catalysis ability are reported scarcely. Our groups1 found L-Prolinamides 1 to be active catalysts for the direct aldol reaction of 4-nitrobenaldehyde with neat acetone at room temperature. The enantioselecti…  相似文献   

17.
Sortase (SrtA), a transpeptidase from Staphylococcus aureus, catalyzes a cell-wall sorting reaction at an LPXTG motif by cleaving between threonine and glycine and subsequently joining the carboxyl group of threonine to an amino group of pentaglycine on the cell wall peptidoglycan. We have applied this transpeptidyl activity of sortase to in vitro protein ligation. We found that in the presence of sortase, protein/peptide with an LPXTG motif can be specifically ligated to an aminoglycine protein/peptide via an amide bond. Additionally, sortase can even conjugate substrates such as (d)-peptides, synthetic branched peptides, and aminoglycine-derivatized small molecules to the C terminus of a recombinant protein. The sortase-mediate protein ligation is robust, specific, and easy to perform, and can be widely applied to specific protein conjugation with polypeptides or molecules of unique biochemical and biophysical properties.  相似文献   

18.
Venoms are a complex cocktail of biologically active molecules, including peptides, proteins, polyamide, and enzymes widely produced by venomous organisms. Through long-term evolution, venomous animals have evolved highly specific and diversified peptides and proteins targeting key physiological elements, including the nervous, blood, and muscular systems. Centipedes are typical venomous arthropods that rely on their toxins primarily for predation and defense. Although centipede bites are frequently reported, the composition and effect of centipede venoms are far from known. With the development of molecular biology and structural biology, the research on centipede venoms, especially peptides and proteins, has been deepened. Therefore, we summarize partial progress on the exploration of the bioactive peptides and proteins in centipede venoms and their potential value in pharmacological research and new drug development.  相似文献   

19.
Peptidyl privileged structures have been widely used by many groups to discover biologically active molecules. In this context, privileged substructures are used as "hydrophobic anchors", to which peptide functionality is appended to gain specificity. Utilization of this concept has led to the discovery of many different active compounds at a wide range of biological receptors. A synthetic approach to these compounds has been developed on a "safety-catch" linker that allows rapid preparation of large libraries of these molecules. Importantly, amide bond formation/cleavage through treatment with amines is the final step; it is a linker strategy that allows significant diversification to be easily incorporated, and it only requires the inclusion of an amide bond. In addition, chemistry has been developed that permits the urea moiety to be inserted at the N-terminus of the peptide, allowing the same set of amines (either privileged substructures or amino acid analogues) to be used at both the N- and C-termini of the molecule. To show the robustness of this approach, a small library of peptidyl privileged structures were synthesized, illustrating that large combinatorial libraries can be synthesized using these technologies.  相似文献   

20.
Mass spectrometry can be used for amino acid sequence determination in β-lysine-containing peptides and for the identification of α- and β-lysine residues in peptides, as well as for amide bond type determination in β-lysine peptides. The peptide bond in streptothricin D is shown to be formed through the participation of an ε-amino group of the L-β-lysine residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号