首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we investigate the validity of the generalized second law of thermodynamics (GSLT) in the DGP braneworld when the universe is filled with interacting two fluid system: one in the form of cold dark matter and other is holographic dark energy. The boundary of the universe is assumed to be enclosed by the dynamical apparent horizon or the event horizon. The universe is chosen to be homogeneous and isotropic FRW model and the validity of the first law has been assumed here.  相似文献   

2.
We consider the generalized second law of black hole thermodynamics in the light of quantum information theory, in particular information erasure and Landauer’s principle (namely, that erasure of information produces at least the equivalent amount of entropy). A small quantum system outside a black hole in the Hartle-Hawking state is studied, and the quantum system comes into thermal equilibrium with the radiation surrounding the black hole. For this scenario, we present a simple proof of the generalized second law based on quantum relative entropy. We then analyze the corresponding information erasure process, and confirm our proof of the generalized second law by applying Landauer’s principle.  相似文献   

3.
The second law of thermodynamics is one of the most fundamental and for-reaching laws of physics. It teaches us that when a closed system undergoes a thermodynamic process the entropy of the system never decreases; it increases, or at least remains constant. If the entropy increases the thermodynamic process is irreversible, otherwise it is reversible. Only ideal thermal process is reversible. In classical world a great number of facts have proved the second law is true. But in quantum world since the quantum coherence and correlations exist we are not sure the second law is still true, at least in principle. This is because that: 1. on the microscopic level the irreversibility is conflict with the reversibility of all fundamental physical laws ; 2. there are not enough evidences to show it is true in quantum world.  相似文献   

4.
Jacob Bekenstein's identification of black hole event horizon area with entropy proved to be a landmark in theoretical physics. In this paper we trace the subsequent development of the resulting generalized second law of thermodynamics (GSL), especially its extension to incorporate cosmological event horizons. In spite of the fact that cosmological horizons do not generally have well-defined thermal properties, we find that the GSL is satisfied for a wide range of models. We explore in particular the case of an asymptotically de Sitter universe filled with a gas of small black holes as a means of casting light on the relative entropic worth of black hole versus cosmological horizon area. We present some numerical solutions of the generalized total entropy as a function of time for certain cosmological models, in all cases confirming the validity of the GSL.  相似文献   

5.
In this paper, we investigate the validity of the generalized second law of thermodynamics of the universe bounded by the event horizon. Here we consider homogeneous and isotropic model of the universe filled with perfect fluid in one case and in another case holographic model of the universe has been considered. In the third case the matter in the universe is taken in the form of non-interacting two fluid system as holographic dark energy and dust. Here we study the above cases in the Modified gravity, f(R) gravity.  相似文献   

6.
By employing the general expression for temperature associated with the apparent horizon of FRW universe and assuming a region of an expanding universe enclosed by the apparent horizon as a thermal system in equilibrium, we are able to show that the generalized second law of thermodynamics holds in Gauss-Bonnet and more general Lovelock gravities.  相似文献   

7.
8.
The consequences of the Second Law of Thermodynamics, as enunciated in the Principle of Carathéodory, are developed by means of a largely formal argument. The need for the introduction of the Theorem of Carathéodory does not arise. One virtue of the method is the immediacy with which it leads to the Principle of Increase of Entropy.  相似文献   

9.
The third law of thermodynamics is formulated precisely: all points of the state space of zero temperature  Γ0  are physically adiabatically inaccessible from the state space of a simple system. In addition to implying the unattainability of absolute zero in finite time (or “by a finite number of operations”), it admits as corollary, under a continuity assumption, that all points of  Γ0  are adiabatically equivalent. We argue that the third law is universally valid for all macroscopic systems which obey the laws of quantum mechanics and/or quantum field theory. We also briefly discuss why a precise formulation of the third law for black holes remains an open problem.  相似文献   

10.
We have investigated the accretion of phantom energy onto a 5-dimensional extreme Einstein-Maxwell-Gauss-Bonnet (EMGB) black hole. It is shown that the evolution of the EMGB black hole mass due to phantom energy accretion depends only on the pressure and density of the phantom energy and not on the black hole mass. Further we study the generalized second law of thermodynamics (GSL) at the event horizon and obtain a lower bound on the pressure of the phantom energy.  相似文献   

11.
We investigate the thermodynamics properties of mesoscopic quantum nanowire devices, such as the effect of electron-phonon relaxation time, Peltier coefficient, carrier concentration, frequency of this field, and channel width. The influence of time-varying fields on the transport through such device has been taken into consideration. This device is modelled as nanowires connecting to two reservoirs. The two-dimensional electron gas in a GaAs- AlGaAs heterojunction has a Fermi wave length which is a hundred times larger than that in a metal. The results show the oscillatory behaviour of dependence of the thermo power on frequency of the induced field. These results agree with the existing experiments and may be important for electronic nanodevices.  相似文献   

12.
13.
14.
I propose an experiment that may be performed, with present low temperature and cryogenic technology, to reveal Wheeler’s quantum foam. It involves coupling an optical photon’s momentum to the center of mass motion of a macroscopic transparent block with parameters such that the latter is displaced in space by approximately a Planck length. I argue that such displacement is sensitive to quantum foam and will react back on the photon’s probability of transiting the block. This might allow determination of the precise scale at which quantum fluctuations of space–time become large, and so differentiate between the brane-world and the traditional scenarios of spacetime.  相似文献   

15.
The neural systems’ electric activities are fundamental for the phenomenology of consciousness. Sensory perception triggers an information/energy exchange with the environment, but the brain’s recurrent activations maintain a resting state with constant parameters. Therefore, perception forms a closed thermodynamic cycle. In physics, the Carnot engine is an ideal thermodynamic cycle that converts heat from a hot reservoir into work, or inversely, requires work to transfer heat from a low- to a high-temperature reservoir (the reversed Carnot cycle). We analyze the high entropy brain by the endothermic reversed Carnot cycle. Its irreversible activations provide temporal directionality for future orientation. A flexible transfer between neural states inspires openness and creativity. In contrast, the low entropy resting state parallels reversible activations, which impose past focus via repetitive thinking, remorse, and regret. The exothermic Carnot cycle degrades mental energy. Therefore, the brain’s energy/information balance formulates motivation, sensed as position or negative emotions. Our work provides an analytical perspective of positive and negative emotions and spontaneous behavior from the free energy principle. Furthermore, electrical activities, thoughts, and beliefs lend themselves to a temporal organization, an orthogonal condition to physical systems. Here, we suggest that an experimental validation of the thermodynamic origin of emotions might inspire better treatment options for mental diseases.  相似文献   

16.
I argue that quantum theory can, and in fact must, be applied to the Universe as a whole. After a general introduction, I discuss two concepts that are essential for my chain of arguments: the universality of quantum theory and the emergence of classical behaviors by decoherence. A further motivation is given by the open problem of quantum gravity. I then present the main ingredients of quantum cosmology and discuss their relevance for the interpretation of quantum theory. I end with some brief epistemological remarks.  相似文献   

17.
We elaborate further on a hypothesis by Winterberg that turbulent fluctuations of the zero point field may lead to a breakdown of the superluminal quantum correlations over very large distances. A phenomenological model that was proposed by Winterberg to estimate the transition scale of the conjectured breakdown, does not lead to a distance that is large enough to be agreeable with recent experiments. We consider, but rule out, the possibility of a steeper slope in the energy spectrum of the turbulent fluctuations, due to compressibility, as a possible mechanism that may lead to an increased lower-bound for the transition scale. Instead, we argue that Winterberg overestimated the intensity of the ZPF turbulent fluctuations. We calculate a very generous corrected lower bound for the transition distance which is consistent with current experiments.  相似文献   

18.
In this paper we examine some proposals to disprove the hypothesis that the interaction between mind and matter causes the collapse of the wave function, showing that such proposals are fundamentally flawed. We then describe a general experimental setup retaining the key features of the ones examined, and show that even a more general case is inadequate to disprove the mind-matter collapse hypothesis. Finally, we use our setup provided to argue that, under some reasonable assumptions about consciousness, such hypothesis is unfalsifiable.  相似文献   

19.
Second Bound State of Biexcitons in Quantum Dots   总被引:1,自引:0,他引:1       下载免费PDF全文
The second bound state of the biexcitons in a quantum dot,with orbital angular moentum L=1,is reported.BY using the method of few-body physics,the binding energy spectra of the second bound state of a biexciton in a GaAs quantum dot with a parabolic confinement have been calculated as a function of the electron-to-hole mass ratio and the quantum dot size.The fact that the biexcitions have a second bound state may aid in the better understanding of their binding mechanism.  相似文献   

20.
An entangled pair of photons (1 and 2) are emitted in opposite directions. A narrow slit is placed in the path of photon 1 to provide the precise knowledge of its position on the y-axis and this also determines the precise y-position of its twin, photon 2, due to quantum entanglement. Is photon 2 going to experience a greater uncertainty in momentum, that is, a greater Δpy because of the precise knowledge of its position y? The experimental data show Δy Δ py < h for photon 2. Can this recent realization of the thought experiment of Karl Popper signal a violation of the uncertainty principle?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号