首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent years, several ways of implementing quantum games in different physical systems have been presented. In this paper, we perform a theoretical analysis of an experimentally feasible way to implement a two player quantum game in cavity quantum electrodynamic(QED). In the scheme, the atoms interact simultaneously with a highly detuned cavity mode with the assistance of a classical field. So the scheme is insensitive to the influence from the cavity decay and the thermal field, and it does not require the cavity to remain in the vacuum state throughout the procedure.  相似文献   

2.
Quantum strategies are introduced into evolutionary games. The agents using quantum strategies are regarded as invaders, whose fraction generally is 1% of a population, in contrast to the 50% of the population that are defectors. In this paper, the evolution of strategies on networks is investigated in a defector-dominated population, when three networks (square lattice, Newman–Watts small-world network, and scale-free network) are constructed and three games (Prisoners’ Dilemma, Snowdrift, and Stag-Hunt) are employed. As far as these three games are concerned, the results show that quantum strategies can always invade the population successfully. Comparing the three networks, we find that the square lattice is most easily invaded by agents that adopt quantum strategies. However, a scale-free network can be invaded by agents adopting quantum strategies only if a hub is occupied by an agent with a quantum strategy or if the fraction of agents with quantum strategies in the population is significant.  相似文献   

3.
The Nash equilibrium plays a crucial role in game theory. Most of results are based on classical resources. Our goal in this paper is to explore multipartite zero-sum game with quantum settings. We find that in two different settings there is no strategy for a tripartite classical game being fair. Interestingly, this is resolved by providing dynamic zero-sum quantum games using single quantum state. Moreover, the gains of some players may be changed dynamically in terms of the committed state. Both quantum games are robust against the preparation noise and measurement errors.  相似文献   

4.
The single-copy entanglement of a given many-body quantum system is defined [J. Eisert and M. Cramer, Phys. Rev. A 72, 042112 (2005)10.1103/PhysRevA.72.042112] as the maximal entanglement deterministically distillable from a bipartition of a single specimen of that system. For critical (gapless) spin chains, it was recently shown that this is exactly half the von Neumann entropy [R. Orús, J. I. Latorre, J. Eisert, and M. Cramer, Phys. Rev. A 73, 060303(R) (2006)], itself defined as the entanglement distillable in the asymptotic limit-i.e., given an infinite number of copies of the system. It is an open question as to what the equivalent behavior for gapped systems is. In this Letter, I show that for the paradigmatic spin-S Affleck-Kennedy-Lieb-Tasaki chain (the archetypal gapped chain), the single-copy entanglement is equal to the von Neumann entropy; i.e., all the entanglement present may be distilled from a single specimen.  相似文献   

5.
We build new quantum games, similar to the spin flip game, where as a novelty the players perform measurements on a quantum system associated to a continuous time search algorithm. The measurements collapse the wave function into one of the two possible states. These games are characterized by a continuous space of strategies and the selection of a particular strategy is determined by the moments when the players measure.  相似文献   

6.
Nash equilibria and correlated equilibria of classical and quantum games are investigated in the context of their Pareto efficiency. The examples of the prisoner’s dilemma, battle of the sexes and the game of chicken are studied. Correlated equilibria usually improve Nash equilibria of games but require a trusted correlation device susceptible to manipulation. The quantum extension of these games in the Eisert–Wilkens–Lewenstein formalism and the Frąckiewicz–Pykacz parameterization is analyzed. It is shown that the Nash equilibria of these games in quantum mixed Pauli strategies are closer to Pareto optimal results than their classical counter-parts. The relationship of mixed Pauli strategies equilibria and correlated equilibria is also studied.  相似文献   

7.
On Quantum Team Games   总被引:2,自引:0,他引:2  
Recently Liu and Simaan (2004) convex static multi-team classical games have been introduced. Here they are generalized to both nonconvex, dynamic and quantum games. Puu's incomplete information dynamical systems are modified and applied to Cournot team game. The replicator dynamics of the quantum prisoner's dilemma game is also studied.  相似文献   

8.
The effect of quantum noise on the restricted quantum game   总被引:1,自引:0,他引:1       下载免费PDF全文
曹帅  方卯发 《中国物理》2006,15(1):60-65
It has recently been established that quantum strategies have great advantage over classical ones in quantum games. However, quantum states are easily affected by the quantum noise resulting in decoherence. In this paper, we investigate the effect of quantum noise on the restricted quantum game in which one player is restricted in classical strategic space, another in quantum strategic space and only the quantum player is affected by the quantum noise. Our results show that in the maximally entangled state, no Nash equilibria exist in the range of It has recently been established that quantum strategies have great advantage over classical ones in quantum games. However, quantum states are easily affected by the quantum noise resulting in decoherence. In this paper, we investigate the effect of quantum noise on the restricted quantum game in which one player is restricted in classical strategic space, another in quantum strategic space and only the quantum player is affected by the quantum noise. Our results show that in the maximally entangled state, no Nash equilibria exist in the range of 0 〈 p ≤ 0.422 (p is the quantum noise parameter), while two special Nash equilibria appear in the range of 0.422 〈 p 〈 1. The advantage that the quantum player diminished only in the limit of maximum quantum noise. Increasing the amount of quantum noise leads to the increase of the classical player's payoff and the reduction of the quantum player's payoff, but is helpful in forming two Nash equilibria.  相似文献   

9.
曹帅  方卯发  郑小娟 《中国物理》2007,16(4):915-918
It has recently been realized that quantum strategies have a great advantage over classical ones in quantum games. However, quantum states are easily affected by the quantum noise, resulting in decoherence. In this paper, we investigate the effect of quantum noise on a multiplayer quantum game with a certain strategic space, with all players affected by the same quantum noise at the same time. Our results show that in a maximally entangled state, a special Nash equilibrium appears in the range of It has recently been realized that quantum strategies have a great advantage over classical ones in quantum games. However, quantum states are easily affected by the quantum noise, resulting in decoherence. In this paper, we investigate the effect of quantum noise on a multiplayer quantum game with a certain strategic space, with all players affected by the same quantum noise at the same time. Our results show that in a maximally entangled state, a special Nash equilibrium appears in the range of 0≤p≤0.622 (p is the quantum noise parameter), and then disappears in the range of 0.622 〈 p≤ 1. Increasing the amount of quantum noise leads to the reduction of the quantum player's payoff.  相似文献   

10.
Any 8-qubit graph state belongs to one of the 101 equivalence classes under local unitary operations within the Clifford group. For each of these classes we obtain a representative which requires the minimum number of controlled-Z gates for its preparation, and calculate the Schmidt measure for the 8-partite split, and the Schmidt ranks for all bipartite splits. This results into an extension to 8 qubits of the classification of graph states proposed by Hein, Eisert, and Briegel [M. Hein, J. Eisert, H.J. Briegel, Phys. Rev. A 69 (2004) 062311].  相似文献   

11.
The sports market has grown rapidly over the last several decades. Sports outcomes prediction is an attractive sports analytic challenge as it provides useful information for operations in the sports market. In this study, a hybrid basketball game outcomes prediction scheme is developed for predicting the final score of the National Basketball Association (NBA) games by integrating five data mining techniques, including extreme learning machine, multivariate adaptive regression splines, k-nearest neighbors, eXtreme gradient boosting (XGBoost), and stochastic gradient boosting. Designed features are generated by merging different game-lags information from fundamental basketball statistics and used in the proposed scheme. This study collected data from all the games of the NBA 2018–2019 seasons. There are 30 teams in the NBA and each team play 82 games per season. A total of 2460 NBA game data points were collected. Empirical results illustrated that the proposed hybrid basketball game prediction scheme achieves high prediction performance and identifies suitable game-lag information and relevant game features (statistics). Our findings suggested that a two-stage XGBoost model using four pieces of game-lags information achieves the best prediction performance among all competing models. The six designed features, including averaged defensive rebounds, averaged two-point field goal percentage, averaged free throw percentage, averaged offensive rebounds, averaged assists, and averaged three-point field goal attempts, from four game-lags have a greater effect on the prediction of final scores of NBA games than other game-lags. The findings of this study provide relevant insights and guidance for other team or individual sports outcomes prediction research.  相似文献   

12.
Entanglement distillation aims at preparing highly entangled states out of a supply of weakly entangled pairs, using local devices and classical communication only. In this note we discuss the experimentally feasible schemes for optical continuous-variable entanglement distillation that have been presented in [D.E. Browne, J. Eisert, S. Scheel, and M.B. Plenio, Phys. Rev. A 67, 062320 (2003)] and [J. Eisert, D.E. Browne, S. Scheel, and M.B. Plenio, Annals of Physics (NY) 311, 431 (2004)]. We emphasize their versatility in particular with regards to the detection process and discuss the merits of the two proposed detection schemes, namely photo-detection and homodyne detection, in the light of experimental realizations of this idea becoming more and more feasible. The text was submitted by the authors in English.  相似文献   

13.
Quantum systems are easily influenced by ambient environments. Decoherence is generated by system interaction with external environment. In this paper, we analyse the effects of decoherence on quantum games with Eisert-Wilkens-Lewenstein (EWL) (Eisert et al., Phys. Rev. Lett. 83(15), 3077 1999) and Marinatto-Weber (MW) (Marinatto and Weber, Phys. Lett. A 272, 291 2000) schemes. Firstly, referring to the analytical approach that was introduced by Eisert et al. (Phys. Rev. Lett. 83(15), 3077 1999), we analyse the effects of decoherence on quantum Chicken game by considering different traditional noisy channels. We investigate the Nash equilibria and changes of payoff in specific two-parameter strategy set for maximally entangled initial states. We find that the Nash equilibria are different in different noisy channels. Since Unruh effect produces a decoherence-like effect and can be perceived as a quantum noise channel (Omkar et al., arXiv:1408.1477v1), with the same two parameter strategy set, we investigate the influences of decoherence generated by the Unruh effect on three-player quantum Prisoners’ Dilemma, the non-zero sum symmetric multiplayer quantum game both for unentangled and entangled initial states. We discuss the effect of the acceleration of noninertial frames on the the game’s properties such as payoffs, symmetry, Nash equilibrium, Pareto optimal, dominant strategy, etc. Finally, we study the decoherent influences of correlated noise and Unruh effect on quantum Stackelberg duopoly for entangled and unentangled initial states with the depolarizing channel. Our investigations show that under the influence of correlated depolarizing channel and acceleration in noninertial frame, some critical points exist for an unentangled initial state at which firms get equal payoffs and the game becomes a follower advantage game. It is shown that the game is always a leader advantage game for a maximally entangled initial state and there appear some points at which the payoffs become zero.  相似文献   

14.
Symmetric quantum games for 2-player, 2-qubit strategies are analyzed in detail by using a scheme in which all pure states in the 2-qubit Hilbert space are utilized for strategies. We consider two different types of symmetric games exemplified by the familiar games, the Battle of the Sexes (BoS) and the Prisoners’ Dilemma (PD). These two types of symmetric games are shown to be related by a duality map, which ensures that they share common phase structures with respect to the equilibria of the strategies. We find eight distinct phase structures possible for the symmetric games, which are determined by the classical payoff matrices from which the quantum games are defined. We also discuss the possibility of resolving the dilemmas in the classical BoS, PD, and the Stag Hunt (SH) game based on the phase structures obtained in the quantum games. It is observed that quantization cannot resolve the dilemma fully for the BoS, while it generically can for the PD and SH if appropriate correlations for the strategies of the players are provided.  相似文献   

15.
The paper is devoted to quantization of extensive games with the use of both the Marinatto-Weber and the Eisert-Wilkens-Lewenstein concept of quantum game. We revise the current conception of quantum ultimatum game and we show why the proposal is unacceptable. To support our approach, we present a new idea of the quantum ultimatum game. Our scheme also makes a point of departure for a general protocol for quantizing extensive games.  相似文献   

16.
《Physics letters. A》2006,356(2):99-103
The Schmidt measure was introduced by Eisert and Briegel for quantifying the degree of entanglement of multipartite quantum systems [J. Eisert, H.-J. Briegel, Phys. Rev. A 64 (2001) 22306]. For two-colorable graph states, the Schmidt measure is related to the spectrum of the associated graph. We observe that almost all two-colorable graph states have maximal Schmidt measure and we construct specific examples. By making appeal to a result of Ehrenfeucht et al. [A. Ehrenfeucht, T. Harju, G. Rozenberg, Discrete Math. 278 (2004) 45], we point out that the graph operations called local complementation and switching form a transitive group acting on the set of all graph states of a given dimension.  相似文献   

17.
While it is known that shared quantum entanglement can offer improved solutions to a number of purely cooperative tasks for groups of remote agents, controversy remains regarding the legitimacy of quantum games in a competitive setting. We construct a competitive game between four players based on the minority game where the maximal Nash-equilibrium payoff when played with the appropriate quantum resource is greater than that obtainable by classical means, assuming a local hidden variable model.  相似文献   

18.
Lei Chen  Ming Gong  Guang-Can Guo 《Physica A》2010,389(19):4071-4074
A Parrondo game is a counterintuitive game where two losing games can be combined to form a winning game. We construct a quantum version of a Parrondo game based on a quantum ratchet effect for a delta-kicked model, which can be realized in optical lattices. A game set is presented and a quantum anti-Parrondo game is also investigated.  相似文献   

19.
基于通信双方预先共享d维二粒子最大纠缠态非定域相关性,信息发送方Bob只需要向信息接收者Alice传送一个粒子,就可以传送logd22比特经典信息,为保护信息的安全,方案采用诱骗光子技术,安全性等价于改进后的原始量子密钥分配方案(Bennett-Brassard 1984,BB84).本文讨论了基于高维纯纠缠态超密编码方案.即通过引入一个附加量子比特,信息接收方对手中的纠缠粒子和附加粒子在执行相应的幺正演化,可以获取dαk2logd2+logd2(αk=minαj,j∈0,L,d-1)比特经典信息.通信双方采用诱骗光子技术确保量子信道的安全建立.与其他方案相比,该方案具有通信效率较高、实用性较强的优点.  相似文献   

20.
Our purpose is to study the Stackelberg duopoly with the use of the Li–Du–Massar quantum duopoly scheme. The result of Lo and Kiang has shown that the correlation of players's quantities caused by the quantum entanglement enlarges the first-mover advantage in the quantum Stackelberg duopoly. However, the interval of entanglement parameters for which this result is valid is bounded from above. It has been an open question what the equilibrium result is over the upper bound, in particular when the entanglement parameter goes to infinity. Our work provides complete analysis of subgame perfect equilibria of the game for all the values of the entanglement parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号