共查询到20条相似文献,搜索用时 15 毫秒
1.
Many key characteristics of hole transfer (HT) in DNA have been derived from spectroscopic studies of DNA hairpins. Because the capping groups in the hairpins can remarkably influence the structure and flexibility of the pi stack, and therefore, the charge transfer rate, the question arises of whether the HT parameters obtained for hairpins may be transferred to DNA oligomers. On the basis of large-time scale QM/MD simulations, we compare structural and electronic parameters of AT stacks in hairpins and DNA oligomers. We find that even in short hairpins, Sa-AA-Sd and Sa-AAA-Sd, the effects of the capping chromophores on the structure of the pi stack and the HT couplings properly averaged over MD trajectories are relatively small, and therefore, the hairpins are good models to study hole transfer through DNA. By contrast, the calculations of the electronic couplings based on the average structures of the systems lead to essential errors in the HT rate and the misleading statement that the charge transfer properties of DNA domains within hairpins are quite different from those of normal sequences. 相似文献
2.
Ibrahim MA 《Journal of chemical information and modeling》2011,51(10):2549-2559
The performance of semiempirical molecular-orbital methods--MNDO, MNDO-d, AM1, RM1, PM3 and PM6--in describing halogen bonding was evaluated, and the results were compared with molecular mechanical (MM) and quantum mechanical (QM) data. Three types of performance were assessed: (1) geometrical optimizations and binding energy calculations for 27 halogen-containing molecules complexed with various Lewis bases (Two of the tested methods, AM1 and RM1, gave results that agree with the QM data.); (2) charge distribution calculations for halobenzene molecules, determined by calculating the solvation free energies of the molecules relative to benzene in explicit and implicit generalized Born (GB) solvents (None of the methods gave results that agree with the experimental data.); and (3) appropriateness of the semiempirical methods in the hybrid quantum-mechanical/molecular-mechanical (QM/MM) scheme, investigated by studying the molecular inhibition of CK2 protein by eight halobenzimidazole and -benzotriazole derivatives using hybrid QM/MM molecular-dynamics (MD) simulations with the inhibitor described at the QM level by the AM1 method and the rest of the system described at the MM level. The pure MM approach with inclusion of an extra point of positive charge on the halogen atom approach gave better results than the hybrid QM/MM approach involving the AM1 method. Also, in comparison with the pure MM-GBSA (generalized Born surface area) binding energies and experimental data, the calculated QM/MM-GBSA binding energies of the inhibitors were improved by replacing the G(GB,QM/MM) solvation term with the corresponding G(GB,MM) term. 相似文献
3.
Electron transfer (ET) reactions are one of the most important processes in chemistry and biology. Because of the quantum nature of the processes and the complicated roles of the solvent, theoretical study of ET processes is challenging. To simulate ET processes at the electronic level, we have developed an efficient density functional theory (DFT) quantum mechanical (QM)/molecular mechanical (MM) approach that uses the fractional number of electrons as the order parameter to calculate the redox free energy of ET reactions in solution. We applied this method to study the ET reactions of the aqueous metal complexes Fe(H(2)O)(6)(2+/3+) and Ru(H(2)O)(6)(2+/3+). The calculated oxidation potentials, 5.82 eV for Fe(II/III) and 5.14 eV for Ru(II/III), agree well with the experimental data, 5.50 and 4.96 eV, for iron and ruthenium, respectively. Furthermore, we have constructed the diabatic free energy surfaces from histogram analysis based on the molecular dynamics trajectories. The resulting reorganization energy and the diabatic activation energy also show good agreement with experimental data. Our calculations show that using the fractional number of electrons (FNE) as the order parameter in the thermodynamic integration process leads to efficient sampling and validate the ab initio QM/MM approach in the calculation of redox free energies. 相似文献
4.
Voityuk AA 《The journal of physical chemistry. B》2005,109(38):17917-17921
In this study, we employ a multistate generalized Mulliken-Hush approach for calculating electronic couplings V(da) for charge transfer (CT) in DNA pi-stacks consisting of three, four, and five base pairs. In these systems the guanine donor and acceptor sites are separated by several (AT) pairs. The Hartree-Fock calculations of the stacks are carried out with the standard 6-31G basis sets. All possible superexchange pathways are accounted for. We examine electronic couplings estimated using the two-state and multistate models. Although for some systems the two-state scheme provides reasonable estimates of V(da), in general this simple model fails to reproduce the electronic couplings calculated with the multistate approach. The two-state treatment of pi-stacks with a tunneling gap less than 0.3 eV, for instance, GAAG and GAAAG, may lead to invalid estimates of V(da). We consider the dependence of V(da) on the length and composition of the bridge. The calculations show that V(da) is less sensitive to the arrangement of nucleobases in the bridge, as can be predicted on the basis of electronic couplings between adjacent base pairs. 相似文献
5.
Stenta M Calvaresi M Altoè P Spinelli D Garavelli M Bottoni A 《The journal of physical chemistry. B》2008,112(4):1057-1059
The enzyme proline racemase from the eukaryotic parasite Trypanosoma cruzi (responsible for endemic Chagas disease) catalyzes the reversible stereoinversion of chiral Calpha in proline. We employed a new combined quantum mechanical and molecular mechanical (QM/MM) potential to study the reaction mechanism of the enzyme. Three critical points were found: two almost isoenergetic minima (M1a and M2a), in which the enzyme is bound to L- and D-Pro, respectively, and a transition state (TSCa), unveiling a highly asynchronous concerted process. A systematic analysis was performed on the optimized geometries to point out the key role played by some residues in stabilizing the transition state. 相似文献
6.
7.
Bushnell EA Erdtman E Llano J Eriksson LA Gauld JW 《Journal of computational chemistry》2011,32(5):822-834
In humans, uroporphyrinogen decarboxylase is intimately involved in the synthesis of heme, where the decarboxylation of the uroporphyrinogen-III occurs in a single catalytic site. Several variants of the mechanistic proposal exist; however, the exact mechanism is still debated. Thus, using an ONIOM quantum mechanical/molecular mechanical approach, the mechanism by which uroporphyrinogen decarboxylase decarboxylates ring D of uroporphyrinogen-III has been investigated. From the study performed, it was found that both Arg37 and Arg50 are essential in the decarboxylation of ring D, where experimentally both have been shown to be critical to the catalytic behavior of the enzyme. Overall, the reaction was found to have a barrier of 10.3 kcal mol(-1) at 298.15 K. The rate-limiting step was found to be the initial proton transfer from Arg37 to the substrate before the decarboxylation. In addition, it has been found that several key interactions exist between the substrate carboxylate groups and backbone amides of various active site residues as well as several other functional groups. 相似文献
8.
We present a series of capping-potentials designed as link atoms to saturate dangling bonds at the quantum/classical interface within density functional theory-based hybrid QM/MM calculations. We aim at imitating the properties of different carbon-carbon bonds by means of monovalent analytic pseudopotentials. These effective potentials are optimized such that the perturbations of the quantum electronic density are minimized. This optimization is based on a stochastic scheme, which helps to avoid local minima trapping. For a series of common biomolecular groups, we find capping-potentials that outperform the more common hydrogen-capping in view of structural and spectroscopic properties. To demonstrate the transferability to complex systems, we also benchmark our potentials with a hydrogen-bonded dimer, yielding systematic improvements in structural and spectroscopic parameters. 相似文献
9.
CASSCF and CAS-PT2 calculations are performed for the ground and excited states of radical cations consisting of two and three nucleobases. The generalized Mulliken-Hush approach is employed for estimating electronic couplings for hole transfer in the pi-stacks. We compare the CASSCF results with data obtained within Koopmans' approximation. The calculations show that an excess charge in the ground and excited states in the systems is quite localized on a single base both at the CASSCF level and in Koopmans' picture. However, the CASSCF calculations point to a larger degree of localization and, in line with this, smaller transition dipole moments. The agreement between the CAS-PT2 corrected energy gaps and the values estimated with Koopmans' theorem is better, with the CAS-PT2 calculations giving somewhat smaller gaps. Overall, both factors result in smaller CASSCF/CAS-PT2 couplings, which are reduced by up to 40% of the couplings calculated using Koopmans' approximation. The tabulated data can be used as benchmark values for the electronic couplings of stacked nucleobases. For the base trimers, comparison of the results obtained within two- and three-state models show that the multistate treatment should be applied to derive reliable estimates. Finally, the superexchange approach to estimate the donor acceptor electronic coupling in the stacks GAG and GTG is considered. 相似文献
10.
Núñez S Antoniou D Schramm VL Schwartz SD 《Journal of the American Chemical Society》2004,126(48):15720-15729
Crystallographic studies of human purine nucleoside phosphorylase (hPNP) with several transition-state (TS) analogues in the immucillin family showed an unusual geometric arrangement of the atoms O-5', O-4', and O(P), the nucleophilic phosphate oxygen, lying in a close three-oxygen stack. These observations were corroborated by extensive experimental kinetic isotope effect analysis. We propose that protein-facilitated dynamic modes in hPNP cause this stack, centered on the ribosyl O-4' oxygen, to squeeze together and push electrons toward the purine ring, stabilizing the oxacarbenium character of the TS. As the N-ribosidic bond is cleaved during the reaction, the pK(a) values of N-7 and O-6 increase by the electron density expelled by the oxygen-stack compression toward the purine ring. Increased electron density in the purine ring improves electrostatic interactions with nearby residues and facilitates the abstraction of a proton from a solvent proton or an unidentified general acid, making the purine a better leaving group, and accelerating catalysis. Classical and mixed quantum/classical molecular dynamics (MD) simulations of the Michaelis complex of hPNP with the substrates guanosine and phosphate were performed to assess the existence of protein-promoting vibrations (PPVs). Analogous simulations were performed for the substrates in aqueous solution. In the catalytic site, the O-5', O-4', and O(P) oxygens vibrate at frequencies of ca. 125 and 465 cm(-1), as opposed to 285 cm(-1) in the absence of hPNP. The hybrid quantum mechanical/molecular mechanical method was used to assess whether this enzymatic vibration pushing the oxygens together is coupled to the reaction coordinate, and thus has a direct positive impact on catalysis. The potential energy surface for the phosphorolysis reaction for several snapshots taken from the classical MD simulation showed substantial differences in oxygen compression. Our calculations showed the existence of PPVs coupled to the reaction coordinate, which effect electronic alterations in the active site by pushing the three oxygen centers together in proximity, and accelerate substrate turnover in the phosphorolysis reaction catalyzed by hPNP. 相似文献
11.
V. V. Vasilyev A. A. Bliznyuk A. A. Voityuk 《International journal of quantum chemistry》1992,44(5):897-930
A computational approach, which involves the combination of the OPLS force field and molecular orbital MNDO , AM 1, and PM 3 methods, has been developed to describe the effects of a large, molecular mechanically simulated environment on the Hamiltonian of a quantum chemical system. To test the validity of the combined quantum mechanical/molecular mechanical (QM /MM ) potential, a systematic study of the structures and energies of neutral and charged hydrogen-bonded complexes has been carried out, including comparisons with pure semiempirical calculations and available experimental and ab initio data. It is shown that, in many cases, the hybrid QM /MM potential behaves better than do related MNDO /M , AM 1, and PM 3 methods. As a case in point, the draw-back of AM 1 favoring bifurcated H-bonded structures over single ones is not presented in the combined AM 1/OPLS scheme. Possible ways of improvement of the combined QM /MM potential are discussed. © 1992 John Wiley & Sons, Inc. 相似文献
12.
Volobuyev M Saint-Martin H Adamowicz L 《The journal of physical chemistry. B》2007,111(37):11083-11089
A computational model, which includes both tunneling and thermal hopping mechanisms, has been applied to study the charge transfer in DNA (GC)n and (AT)n strands. The calculations revealed the crucial role played by the A or G NH2-group vibrations in the hole transfer in both types of strands. Charge-transfer rates in the two strands have been determined based on the molecular dynamics calculations. They are in good agreement with the available experimental data. The modeling approach used here may be employed in the theoretical study of the charge transfer in natural and artificial DNA strands containing AT and GC pairs. 相似文献
13.
Zhang Y 《The Journal of chemical physics》2005,122(2):024114
The pseudobond approach offers a smooth connection at the quantum mechanical/molecular mechanical interface which passes through covalent bonds. It replaces the boundary atom of the environment part with a seven-valence-electron atom to form a pseudobond with the boundary atom of the active part [Y. Zhang, T. S. Lee, and W. Yang, J. Chem. Phys. 110, 46 (1999)]. In its original formulation, the seven-valence-electron boundary atom has the basis set of fluorine and a parametrized effective core potential. Up to now, only the Cps(sp3)-C(sp3) pseudobond has been successfully developed; thus in the case of proteins, it can only be used to cut the protein side chains. Here we employ a different formulation to construct this seven-valence-electron boundary atom, which has its own basis set as well as the effective core potential. We have not only further improved Cps(sp3)-C(sp3) pseudobond, but also developed Cps(sp3)-C(sp2,carbonyl) and Cps(sp3)-N(sp3) pseudobonds for the cutting of protein backbones and nucleic acid bases. The basis set and effective core potential for the seven-valence-electron boundary atom are independent of the molecular mechanical force field. Although the parametrization is performed with density functional calculations using hybrid B3LYP exchange-correlation functional, it is found that the same set of parameters is also applicable to Hartree-Fock and MP2 methods, as well as DFT calculations with other exchange-correlation functionals. Tests on a series of molecules yield very good structural, electronic, and energetic results in comparison with the corresponding full ab initio quantum mechanical calculations. 相似文献
14.
The Golgi glycosyltransferase, N-acetylglucosaminyltransferase I (GnT-I), catalyzes the transfer of a GlcNAc residue from the donor UDP-GlcNAc to the C2-hydroxyl group of a mannose residue in the trimannosyl core of the Man5GlcNAc2-Asn-X oligosaccharide. The catalytic mechanism of GnT-I was investigated using a hybrid quantum mechanical/molecular mechanical (QM/MM) method with a QM part containing 88 atoms treated with density functional theory (DFT) at the BP/TZP level. The remaining parts of a GnT-I complex, altogether 5633 atoms, were modeled using the AMBER molecular force field. A theoretical model of a Michaelis complex was built using the X-ray structure of GnT-I in complex with the donor having geometrical features consistent with kinetic studies. The QM(DFT)/MM model identified a concerted SN2-type of transition state with D291 as the catalytic base for the reaction in the enzyme active site. The TS model features nearly simultaneous nucleophilic addition and dissociation steps accompanied by the transfer of the nucleophile proton Hb2 to the catalytic base D291. The structure of the TS model is characterized by the Ob2-C1 and C1-O1 bond distances of 1.912 and 2.542 A, respectively. The activation energy for the proposed reaction mechanism was estimated to be approximately 19 kcal mol-1. The calculated alpha-deuterium kinetic isotope effect of 1.060 is consistent with the proposed reaction mechanism. Theoretical results also identified interactions between the Hb6 and beta-phosphate oxygen of the UDP and a low-barrier hydrogen bond between the nucleophile and the catalytic base D291. It is proposed that these interactions contribute to a stabilization of TS. This modeling study provided detailed insight into the mechanism of the GlcNAc transfer catalyzed by GnT-I, which is the first step in the conversion of high mannose oligosaccharides to complex and hybrid N-glycan structures. 相似文献
15.
Importance of accurate charges in molecular docking: quantum mechanical/molecular mechanical (QM/MM) approach 总被引:2,自引:0,他引:2
The extent to which accuracy of electric charges plays a role in protein-ligand docking is investigated through development of a docking algorithm, which incorporates quantum mechanical/molecular mechanical (QM/MM) calculations. In this algorithm, fixed charges of ligands obtained from force field parameterization are replaced by QM/MM calculations in the protein environment, treating only the ligands as the quantum region. The algorithm is tested on a set of 40 cocrystallized structures taken from the Protein Data Bank (PDB) and provides strong evidence that use of nonfixed charges is important. An algorithm, dubbed "Survival of the Fittest" (SOF) algorithm, is implemented to incorporate QM/MM charge calculations without any prior knowledge of native structures of the complexes. Using an iterative protocol, this algorithm is able in many cases to converge to a nativelike structure in systems where redocking of the ligand using a standard fixed charge force field exhibits nontrivial errors. The results demonstrate that polarization effects can play a significant role in determining the structures of protein-ligand complexes, and provide a promising start towards the development of more accurate docking methods for lead optimization applications. 相似文献
16.
17.
A potential scaling version of simulated tempering is presented to efficiently sample configuration space in a localized region. The present "simulated scaling" method is developed with a Wang-Landau type of updating scheme in order to quickly flatten the distributions in the scaling parameter lambdam space. This proposal is meaningful for a broad range of biophysical problems, in which localized sampling is required. Besides its superior capability and robustness in localized conformational sampling, this simulated scaling method can also naturally lead to efficient "alchemical" free energy predictions when dual-topology alchemical hybrid potential is applied; thereby simultaneously, both of the chemically and conformationally distinct portions of two end point chemical states can be efficiently sampled. As demonstrated in this work, the present method is also feasible for the quantum mechanical and quantum mechanical/molecular mechanical simulations. 相似文献
18.
19.
Derat E Cohen S Shaik S Altun A Thiel W 《Journal of the American Chemical Society》2005,127(39):13611-13621
The active species, Compound I, of horseradish peroxidase (HRP) has been investigated by quantum mechanical/molecular mechanical (QM/MM) calculations using 10 different QM regions. In accord with experimental data, the lowest doublet and quartet states are found to be virtually degenerate, with two unpaired electrons on the FeO moiety and one localized on the porphyrin in an a(2u)-dominant orbital with a minor, but nonnegligible, a(1u) component. The proximal ligand appears to be imidazole rather than imidazolate. The hydrogen-bonding network around the FeO moiety (i.e., Arg38 and His42) has significant influence on the axial bonds and the spin density distribution in the FeO moiety. Including this network in the QM region was found to be essential for reproducing the experimental M?ssbauer parameters. The protein environment shapes most of the subtle features of Compound I of HRP. 相似文献
20.
In this work we have investigated the first hyperpolarizability of pNA in 1,4-dioxane solution using a quantum mechanics/molecular mechanics (QM/MM) model. The particular model adopted is the recently developed discrete solvent reaction field (DRF) model. The DRF model is a polarizable QM/MM model in which the QM part is treated using time-dependent density-functional theory and local-field effects are incorporated. This allows for direct computation of molecular effective properties which can be compared with experimental results. The solvation shift for the first hyperpolarizability is calculated to be 30% which is in good agreement with the experimental results. However, the calculated values, both in the gas phase and in solution, are by a factor of 2 larger than the experimental ones. This is in contrast to the calculation of the first hyperpolarizability for several small molecules in the gas phase where fair agreement is found with experimental. The inclusion of local-field effects in the calculations was found to be crucial and neglecting them led to results which are significantly larger. To test the DRF model the refractive index of liquid 1,4-dioxane was also calculated and found to be in good agreement with experiment. 相似文献