首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Micellar solutions made of a fully fluorinated surfactant, LiPFN, form water-soluble complexes with lysozyme in a wide concentration range. Such complexes are stabilized by electrostatic and, very presumably, double-layer interactions. The mixtures were investigated by combining electrophoretic mobility, DLS, and dielectric relaxation methods. The former gives information on the surface charge density of protein-micelle complexes and indicates that the resulting adducts retain a negative charge (i.e., charge neutralization is incomplete). The double-layer thickness of proteins, micelles, and protein-micelle complexes is also connected to the dielectric relaxation frequency. Changes in particle size (inferred by DLS), charge density, and double-layer thickness are closely interrelated to each other. A model was developed to quantify such properties.  相似文献   

4.
Many naturally occurring biomaterials are composed of laminated structures in which layers of beta-sheet proteins alternate with layers of inorganic mineral. These ordered laminates often have structural and mechanical properties that differ significantly from those of nonbiological materials. An important step in the construction of novel biomaterials is the creation of composites wherein a de novo designed protein assembles into an ordered structure. To achieve this goal, we layered a de novo protein onto the surface of highly ordered pyrolytic graphite (HOPG). The protein was derived from a combinatorial library of novel sequences designed to fold into amphiphilic beta-sheet structures. Atomic force microscopy reveals that the protein assembles on the HOPG surface into ordered fibers aligned in three orientations at 120 degrees to each other. The symmetry and extent of the ordered regions indicate that the hexagonal lattice underlying the graphite surface templates assembly of millions of protein molecules into a highly ordered structure.  相似文献   

5.
6.
Computationally designing protein-protein interactions with high affinity and desired orientation is a challenging task. Incorporating metal-binding sites at the target interface may be one approach for increasing affinity and specifying the binding mode, thereby improving robustness of designed interactions for use as tools in basic research as well as in applications from biotechnology to medicine. Here we describe a Rosetta-based approach for the rational design of a protein monomer to form a zinc-mediated, symmetric homodimer. Our metal interface design, named MID1 (NESG target ID OR37), forms a tight dimer in the presence of zinc (MID1-zinc) with a dissociation constant <30 nM. Without zinc the dissociation constant is 4 μM. The crystal structure of MID1-zinc shows good overall agreement with the computational model, but only three out of four designed histidines coordinate zinc. However, a histidine-to-glutamate point mutation resulted in four-coordination of zinc, and the resulting metal binding site and dimer orientation closely matches the computational model (Cα rmsd = 1.4 ?).  相似文献   

7.
8.
A supramolecular approach has been used to investigate the free energies of intermolecular aromatic stacking interactions. Chemical double mutant cycles have been used to measure the effect of a range of substituents on face-to-face stacking interactions with phenyl and pentafluorophenyl rings. Electrostatic effects dominate the trends in interaction energy.  相似文献   

9.
The use of side chains as catalytic cofactors for protein mediated redox chemistry raises significant mechanistic issues as to how these amino acids are activated toward radical chemistry in a controlled manner. De novo protein design has been used to examine the structural basis for the creation and maintenance of a tryptophanyl radical in a three-helix bundle protein maquette. Here we report the detailed structural analysis of the protein by multidimensional NMR methods. An interesting feature of the structure is an apparent pi-cation interaction involving the sole tryptophan and a lysine side chain. Hybrid density functional calculations support the notion that this interaction raises the reduction potential of the W degrees /WH redox pair and helps explain the redox characteristics of the protein. This model protein system therefore provides a powerful model for exploring the structural basis for controlled radical chemistry in protein.  相似文献   

10.
Each protein has a unique pattern of histidine residues on the surface. This paper describes the design, synthesis, and binding studies of transition metal complexes to target the surface histidine pattern of carbonic anhydrase (bovine erythrocyte). When the pattern of cupric ions on a complex matches the surface pattern of histidines of the protein, strong and selective binding can be achieved in aqueous buffer (pH = 7.0). The described method of protein recognition is applicable to proteins of known structures. With rapidly increasing number of solved protein structures, the method has wide applicability in purification, targeting, and sensing of proteins.  相似文献   

11.
It is demonstrated that continuous filaments of rapidly crystallizing polymers, such as polyethylene and polypropylene, can be spun from the melt using an electric field as the only driving force. The molten polymer is fed into a metallic capillary forming a hemispherical drop at the end of the orifice. An electrical field is applied between the capillary and a conducting plate held perpendicular to the axis of the orifice. Above a critical field intensity a fine continuous jet of molten polymer is drawn; rapid crystallization ensues and a continuous fiber is formed. For fibers spun in an uncontrolled thermal environment, corresponding to ambient air temperature, and at electric field intensities of 6 and 7 kV cm?1, the properties are typically those of unoriented or slightly oriented polyolefin fibers, such as would be obtained in a conventional fiber spinning process.  相似文献   

12.
The thermodynamics of ferric and ferrous haem affinity of a de novo designed four-alpha-helix bundle protein and the associated haem electrochemistry is described.  相似文献   

13.
The work reported herein deals with the synthesis and the preliminary physical-chemical analysis of new hemifluorinated surfactant made up of one fluorinated chain linked to a tricarboxylic acid polar head which is able to complex a Ni atom and should favor the two-dimensional crystallization of membrane proteins. Such a compound forms a Langmuir film which is a fluid at 20 °C and not perturbed by the presence of hydrocarbon detergent in aqueous solution.  相似文献   

14.
We have demonstrated for the first time that the self-spreading of supported lipid bilayers can be controlled by the temporal switching of an electric field applied between nanogap electrodes. To account for this phenomenon, we propose an electrostatic trapping model in which an electric double layer plays an important role. The validity of this mechanism was verified by the dependence of self-spreading on the nanogap width and the ionic concentration of the electrolyte. Our results provide a promising tool for the temporal and spatial control of lipid bilayer formation for nanobio devices.  相似文献   

15.
16.
This report describes a model protein specifically tailored to electrochemically study the reduction potential of protein tyrosine radicals as a function of pH. The model system is based on the 67-residue α(3)Y three-helix bundle. α(3)Y contains a single buried tyrosine at position 32 and displays structural properties inherent to a protein. The present report presents differential pulse voltammograms obtained from α(3)Y at both acidic (pH 5.6) and alkaline (pH 8.3) conditions. The observed Faradaic response is uniquely associated with Y32, as shown by site-directed mutagenesis. This is the first time voltammetry is successfully applied to detect a redox-active tyrosine residing in a structured protein environment. Tyrosine is a proton-coupled electron-transfer cofactor making voltammetry-based pH titrations a central experimental approach. A second set of experiments was performed to demonstrate that pH-dependent studies can be conducted on the redox-active tyrosine without introducing large-scale structural changes in the protein scaffold. α(3)Y was re-engineered with the specific aim to place the imidazole group of a histidine close to the Y32 phenol ring. α(3)Y-K29H and α(3)Y-K36H each contain a histidine residue whose protonation perturbs the fluorescence of Y32. We show that these variants are stable and well-folded proteins whose helical content, tertiary structure, solution aggregation state, and solvent-sequestered position of Y32 remain pH insensitive across a range of at least 3-4 pH units. These results confirm that the local environment of Y32 can be altered and the resulting radical site studied by voltammetry over a broad pH range without interference from long-range structural effects.  相似文献   

17.
Betabellin 15D is a 64-residue, disulfide-bridged homodimer. When folded into a beta structure, the protein is predicted to have two clusters of three histidine residues, each cluster able to bind a divalent metal ion. When the protein was incubated with Cu2+, Zn2+, Co2+, or Mn2+, metal complexes of betabellin 15D were observed by electrospray-ionization mass spectrometry. The relative abundances of the ionic complexes suggested an order of affinities of Cu2+ > Zn2+ > Co2+ > Mn2+, consistent with solution-phase affinities for nitrogen- or sulfur-containing ligands. Limited proteolysis of betabellin 15D by immobilized pepsin, as measured by nanoelectrospray-ionization mass spectrometry, showed that the Phe12-Ser13 peptide bond of betabellin 15D was cleaved more slowly in the presence of Cu2+ than in its absence. Because Cu2+ has little or no effect on the catalytic rate of pepsin, the slower cleavage of the Phe12-Ser13 peptide bond may be due to its decreased accessibility caused by Cu(2+)-induced folding of betabellin 15D.  相似文献   

18.
19.
Amyloid-like fibrils formed from de novo designed short peptides, made up a nanoscale scaffold on which streptavidin was arranged in a regular spacing, potentially allowing the development into an array technology utilizing bio-nanoconstructs.  相似文献   

20.
The effect of the coating of the fiber on the stiffness and toughness of composite materials is presented in this paper. The type of composite material considered is of a macroscopically isotropic composite medium containing coated fibers. The models used to simulate such materials consists of: the cylindrical fiber, a cylindrical annulus of the coating, an annulus of the matrix enveloped by an infinite region of an equivalent composite consisting of a transversely isotropic material and representing the real composite with dispersed coated fibers. Solutions for the longitudinal, transverse and shear elastic moduli in the four-phase model were established assuming linear elastic conditions. The results were found to depend on the extent and the mechanical properties of the coating. The stiffness and toughness of the composite were evaluated in models representing plane-stress equatorial sections of the representative volume element of the real material according to the Hashin-Rosen model. The stiffness of the fiber composites was studied by varying the rigidity and the extent of the fiber-coating in the model and evaluating its influence on the overall mechanical behavior of the model. On the other hand, the toughness of the composite was evaluated by the method of caustics in models made of composite PMMA plates with PMMA inclusions coated with a ductile annulus. Interesting results were derived concerning the influence of the soft annulus on the mechanical behavior of the composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号