首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Crystals of the metal-organic framework material Ni(2)(4,4'-bipyridine)(3)(NO(3))(4) (A) have been grown by reaction of Ni(NO(3))(2).6H(2)O and 4,4'-bipyridine in methanol solution. Single-crystal X-ray diffraction experiments show that the ladder structure of the framework is maintained after desolvation of the material, resulting in the production of a porous solid stable to 215(4) degrees C. Powder X-ray diffraction has been employed to confirm the bulk purity and temperature stability of this material. The crystal structure indicates that the pore window has an area of 12.3 A(2). However, sorption experiments show these windows will admit toluene, which has a minimum cross-sectional area of 26.6 A(2), with no significant change in the structure. Monte Carlo docking calculations show that toluene can be accommodated within the large pores of the structure. Exposure of the related microporous material Ni(2)(4,4'-bipyridine)(3)(NO(3))(4).2C(2)H(5)OH (B) to methanol vapor causes a guest-driven solid-state transformation to A which is observed using powder X-ray diffraction. This structural rearrangement proceeds directly from crystalline B to crystalline A and is complete in less than 1 day. Mechanisms for the transformation are proposed which require breaking of at least one in six of the covalent bonds that confer rigidity on the framework.  相似文献   

2.
Ligand flexibility permits framework rearrangement upon evacuation and gas uptake in a new family of porous MOFs.  相似文献   

3.
A new three-dimensional magnesium formate polymorph, namely, γ-[Mg(3)(O(2)CH)(6)] has been synthesized via in situ formate anion generation method. γ-Mg-formate crystallizes in space group Pbcn, and structural determination by X-ray single crystal diffraction reveals a three-dimensional network of Mg(2+) linked by formate anions. All formate anions possess similar binding mode to the metal center with one oxygen of a particular formate anion binds to one metal center (μ(1) oxygen) and other oxygen binds to two metal centers (μ(2) oxygen). N(2) adsorption studies indicate that the framework displays permanent porosity. The specific surface area of γ-Mg-formate (BET, 120 m(2) gm(-1)) is lower than the α- polymorph (BET, 150 m(2) gm(-1)). However, the initial hydrogen uptake of γ-Mg-formate reached almost 1.0 wt % when the adsorbate pressure approached 760 Torr at 77 K. This is higher than the hydrogen uptake of α-Mg-formate (0.6 wt %). γ-Mg-formate, shows a moderate affinity and capacity for CO(2) (3.4 ? kinetic diameter) at 298 K. The CO(2) uptake at 760 Torr is 2.01 mmol gm(-1) (47.0 cc gm(-1)). Although this CO(2) uptake is somewhat modest, it compares well with the CO(2) uptake of several Mg-MOFs and ZIFs reported in the literature.  相似文献   

4.
An interdigitated porous coordination polymer with hydrophobic pore surface shows size and affinity dependent selective gas sorption properties accompanying the reversible structure transformation.  相似文献   

5.
A highly stable porous lanthanide metal-organic framework, Y(BTC)(H2O).4.3H2O (BTC = 1,3,5-benzenetricarboxylate), with pore size of 5.8 A has been constructed and investigated for hydrogen storage. Gas sorption measurements show that this porous MOF exhibits highly selective sorption behaviors of hydrogen over nitrogen gas molecules and can take up hydrogen of about 2.1 wt % at 77 K and 10 bar. Difference Fourier analysis of neutron powder diffraction data revealed four distinct D2 sites that are progressively filled within the nanoporous framework. Interestingly, the strongest adsorption sites identified are associated with the aromatic organic linkers rather than the open metal sites, as occurred in previously reported MOFs. Our results provide for the first time direct structural evidence demonstrating that optimal pore size (around 6 A, twice the kinetic diameter of hydrogen) strengthens the interactions between H2 molecules and pore walls and increases the heat of adsorption, which thus allows for enhancing hydrogen adsorption from the interaction between hydrogen molecules with the pore walls rather than with the normally stronger adsorption sites (the open metal sites) within the framework. At high concentration H2 loadings (5.5 H2 molecules (3.7 wt %) per Y(BTC) formula), H2 molecules form highly symmetric novel nanoclusters with relatively short H2-H2 distances compared to solid H2. These observations are important and hold the key to optimizing this new class of rare metal-organic framework (RMOF) materials for practical hydrogen storage applications.  相似文献   

6.
7.
Photochemical [2+2] cycloaddition reactions in a two-dimensional interdigitated porous crystalline framework proceed in a single-crystal-to-single-crystal manner, and one-dimensional channels show structural changes that have a significant impact on the CO(2) sorption.  相似文献   

8.
The porous metal-organic framework (MOF) PCM-4, based on tris(para-carboxylated) triphenylphosphine oxide, contains atypical, polar organic substituents; the material exhibits a hysteretic sorption of Ar, N2 and O2, and demonstrates the advantage of ligands of this type.  相似文献   

9.
Selective synthetic routes to coordination polymers [Cu(bpy)(2)(OTf)(2)](n) (bpy = 4,4'-bipyridine, OTf = trifluoromethanesulfonate) with 2- and 3-dimensionalities of the frameworks were established by properly choosing each different solvent-solution system. They show a quite similar local coordination environment around the Cu(II) centers, but these assemble in a different way leading to the 2D and 3D building-up structures. Although the two kinds of porous coordination polymers (PCPs) both have flexible frameworks, the 2D shows more marked flexibility than the 3D, giving rise to different flexibility-associated gas adsorption behaviors. All adsorption isotherms for N(2), CO(2), and Ar on the 3D PCP are of type I, whereas the 2D PCP has stepwise gas adsorption isotherms, also for CH(4) and water, in addition to these gases. The 3D structure, having hydrophilic and hydrophobic pores, shows the size-selective and quadrupole-surface electrical field interaction dependent adsorption. Remarkably, the 2D structure can accommodate greater amounts of gas molecules than that corresponding to the inherent crystallographic void volume through framework structural changes. In alcohol adsorption isotherms, however, the 2D PCP changes its framework structure through the guest accommodation, leading to no stepwise adsorption isotherms. The structural diversity of the 2D PCP stems from the breathing phenomenon and expansion/shrinkage modulation.  相似文献   

10.
11.
Two porous metal organic frameworks (MOFs), [M2(C8H2O6)(H2O)2] x 8 H2O (M = Co, Ni), perform exceptionally well for the adsorption, storage, and water-triggered delivery of the biologically important gas nitric oxide. Adsorption and powder X-ray diffraction studies indicate that each coordinatively unsaturated metal atom in the structure coordinates to one NO molecule. All of the stored gas is available for delivery even after the material has been stored for several months. The combination of extremely high adsorption capacity (approximately 7 mmol of NO/g of MOF) and good storage stability is ideal for the preparation of NO storage solids. However, most important is that the entire reservoir of stored gas is recoverable on contact with a simple trigger (moisture). The activity of the NO storage materials is proved in myography experiments showing that the NO-releasing MOFs cause relaxation of porcine arterial tissue.  相似文献   

12.
13.
Novel microporous metal-organic framework material composed of Mn(II) and formate ions displays permanent porosity, high thermal stability, and size-selective gas sorption behavior. The framework is stable enough to maintain single crystallinity after the complete guest removal at 150 degrees C under a reduced pressure. Most importantly, it selectively adsorbs H2 and CO2 but not N2 and other gases with larger kinetic diameters, which appears to be due to the small aperture of the channels. Despite a moderate H2 storage capacity, which is however still higher than that of any zeolite, its H2 surface coverage is one of the highest among the known microporous materials. Thus this new zeolite-like material made of a simple organic building block may find useful applications in gas separation and sensor.  相似文献   

14.
A microporous metal-organic framework 1 Co(NDC)(4,4'-Bipy)(0.5).G(x) (NDC = 2,6-naphthalenedicarboxylate; 4,4'-Bipy = 4,4'-bipyridine; G = guest molecules) was synthesized and structurally characterized of a doubly interpenetrated primitive cubic net. To make use of the framework flexibility, 1 was activated at temperatures of 150 and 200 degrees C to form 1a and 1b, respectively, exhibiting highly selective sorption behaviors of hydrogen over nitrogen-gas molecules.  相似文献   

15.
Single-crystal X-ray diffraction study reveals the host-guest interactions between a homochiral metal-organic framework and two enantiomers of a chiral alcohol providing the key driving force for the enantioselective sorption of alcohols in the framework.  相似文献   

16.
Gao WY  Yan W  Cai R  Meng L  Salas A  Wang XS  Wojtas L  Shi X  Ma S 《Inorganic chemistry》2012,51(8):4423-4425
The self-assembly of a custom-designed bifunctional ligand featuring both 1,2,3-triazolate and carboxylate donor groups with a pentanuclear zinc cluster generated in situ affords a double-walled metal triazolate framework (MTAF) material, MTAF-1 (Zn(5)(μ(3)-O)(2)(C(9)N(3)H(5)O(2))(5)(H(+))(4)(H(2)O)(17)(C(3)H(7)NO)(10)), which exhibits a surface area of 2300 m(2)/g and demonstrates interesting selective CO(2) uptake performances.  相似文献   

17.
A homochiral microporous material is presented. The phase has 47% permanently porous void volume and is shown to have >1 nm diameter pores with three-dimensional channels using probe molecule sorption. Enantioselective guest sorption is strongly dependent on guest size. The homochiral microporous phase was identified by reactive selection from a first-generation chiral but nonporous framework. Chiral permanent porosity is established by directional noncovalent interactions between framework-forming and nonframework forming components of the stable second-generation material, which become stronger upon loss of the guests from the pore system.  相似文献   

18.
A robust porous metal-organic framework (MOF), [Co(3)(ndc)(HCOO)(3)(μ(3)-OH)(H(2)O)](n) (1) (H(2)ndc=5-(4-pyridyl)-isophthalic acid), was synthesized with pronounced porosity. MOF 1 contained two different types of nanotubular channels, which exhibited a new topology with the Schlafli symbol of {4(2).6(5).8(3)}{4(2).6}. MOF 1 showed high-efficiency for the selective sorption of small molecules, including the energy-correlated gases of H(2), CH(4), and CO(2), and environment-correlated steams of alcohols, acetone, and pyridine. Gas-sorption experiments indicated that MOF 1 exhibited not only a high CO(2)-uptake (25.1 wt % at 273 K/1 bar) but also the impressive selective sorption of CO(2) over N(2) and CH(4). High H(2)-uptake (2.04 wt % at 77 K/1 bar) was also observed. Moreover, systematic studies on the sorption of steams of organic molecules displayed excellent capacity for the sorption of the homologous series of alcohols (C(1)-C(5)), acetone, pyridine, as well as water.  相似文献   

19.
[Co3(HCOO)6](CH3OH)(H2O) (1), the isostructural analogue of the porous magnet of coordination framework [Mn3(HCOO)6](CH3OH)(H2O), and its desolvated form [Co3(HCOO)6] (2) were prepared and characterized by X-ray and neutron diffraction methods, IR, thermal analyses, and BET, and their magnetic properties were measured. The parent compound, 1, crystallizes in the monoclinic system, space group P21/c, a = 11.254(2) A, b = 9.832(1) A, c = 18.108(3) A, beta = 127.222(2) degrees , V = 1595.5(4) A3, Z = 4, R1 = 0.0329 at 180 K. It possesses a unit cell volume that is 9% smaller than [Mn3(HCOO)6](CH3OH)(H2O) due to the smaller radius of Co2+ ion. Compared with the parent compound 1, the desolvated compound 2 has slightly larger lattice with cell parameters of a = 11.2858(4) A, b = 9.8690(4) A, c = 18.1797(6) A, beta = 127.193(2) degrees , V = 1613.0(1) A3, R1 = 0.0356 at 180 K. The cell parameters of 2, obtained from neutron powder data at 2 K, are a = 11.309(2) A, b = 9.869(1) A, c = 18.201(3) A, beta = 127.244(8) degrees , V = 1617.3(5) A3. The pore volume reduces from 33% to 30% by replacing Mn by Co. The material exhibits a diamond framework based on Co-centered CoCo4 tetrahedral nodes, in which all metal ions have octahedral coordination geometry and all HCOO groups link the metal ions in syn-syn/anti modes. It displays thermal stability up to 270 degrees C. The compound easily loses guest molecules without loss of crystallinity, and it partly reabsorbs water from the atmosphere. Significant N2 sorption was observed for the desolvated framework suggesting that the material possesses permanent porosity. The magnetic properties show a tendency to a 3D long-range magnetic ordering, probably antiferromagnetic with a spin canting arrangement below 2 K.  相似文献   

20.
A pure inorganic porous framework based on the tungstoferrate[FeW12O40]5-,Fe(H2O)6H[Na6FeW12O40]2·44H2O(1) was obtained by the conventional aqueous solution method and characterized by elemental analysis,TG,FT-IR,UV-vis spectroscopy. Single-crystal X-ray diffraction analyses reveal that compound 1 crystallizes in the space group Fm-3m,which is composed of a porous inorganic framework[Na6FeW12O40]n with two kinds of pores A and B,accommodating Fe(H2O)6 units in pore A,which was observed rarely in the pure inorganic framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号