首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HRMAS NMR of tau paired helical fragments assembled with heparin show an intensity decrease for those amino acids that are incorporated into the rigid core region, whereas the N-terminal amino acids maintain their full mobility.  相似文献   

2.
We have employed two-dimensional solid-state NMR to study structure and dynamics of insoluble folding states of the domain-swapped protein Crh. Starting from the protein precipitated at its pI, conformational changes due to a modest temperature increase were investigated at the level of individual residues and in real-time. As compared to the crystalline state, Crh pI-precipitates exhibited a higher degree of molecular mobility for several regions of the protein. A rigidly intact center was observed including a subset of residues of the hydrophobic core. Raising the temperature by 13 K to 282 K created a partially unfolded intermediate state that was converted into beta-sheet-rich aggregates that are mostly of spherical character according to electron microscopy. Residue-by-residue analysis indicated that two out of three alpha-helices in aggregated Crh underwent major structural rearrangements while the third helix was preserved. Residues in the hinge region exhibited major chemical-shift changes, indicating that the domain swap was not conserved in the aggregated form. Our study provides direct evidence that protein aggregates of a domain-swapped protein retain a significant fraction of native secondary structure and demonstrates that solid-state NMR can be used to directly monitor slow molecular folding events.  相似文献   

3.
(51)V solid-state NMR (SSNMR) studies of a series of noninnocent vanadium(V) catechol complexes have been conducted to evaluate the possibility that (51)V NMR observables, quadrupolar and chemical shift anisotropies, and electronic structures of such compounds can be used to characterize these compounds. The vanadium(V) catechol complexes described in these studies have relatively small quadrupolar coupling constants, which cover a surprisingly small range from 3.4 to 4.2 MHz. On the other hand, isotropic (51)V NMR chemical shifts cover a wide range from -200 to 400 ppm in solution and from -219 to 530 ppm in the solid state. A linear correlation of (51)V NMR isotropic solution and solid-state chemical shifts of complexes containing noninnocent ligands is observed. These experimental results provide the information needed for the application of (51)V SSNMR spectroscopy in characterizing the electronic properties of a wide variety of vanadium-containing systems and, in particular, those containing noninnocent ligands and that have chemical shifts outside the populated range of -300 to -700 ppm. The studies presented in this report demonstrate that the small quadrupolar couplings covering a narrow range of values reflect the symmetric electronic charge distribution, which is also similar across these complexes. These quadrupolar interaction parameters alone are not sufficient to capture the rich electronic structure of these complexes. In contrast, the chemical shift anisotropy tensor elements accessible from (51)V SSNMR experiments are a highly sensitive probe of subtle differences in electronic distribution and orbital occupancy in these compounds. Quantum chemical (density functional theory) calculations of NMR parameters for [VO(hshed)(Cat)] yield a (51)V chemical shift anisotropy tensor in reasonable agreement with the experimental results, but surprisingly the calculated quadrupolar coupling constant is significantly greater than the experimental value. The studies demonstrate that substitution of the catechol ligand with electron-donating groups results in an increase in the HOMO-LUMO gap and can be directly followed by an upfield shift for the vanadium catechol complex. In contrast, substitution of the catechol ligand with electron-withdrawing groups results in a decrease in the HOMO-LUMO gap and can directly be followed by a downfield shift for the complex. The vanadium catechol complexes were used in this work because (51)V is a half-integer quadrupolar nucleus whose NMR observables are highly sensitive to the local environment. However, the results are general and could be extended to other redox-active complexes that exhibit coordination chemistry similar to that of the vanadium catechol complexes.  相似文献   

4.
A novel approach for detection of ligand binding to a protein in solid samples is described. Hydrated precipitates of the anti-apoptotic protein Bcl-xL show well-resolved (13)C-(13)C 2D solid-state NMR spectra that allow site-specific assignment of resonances for many residues in uniformly (13)C-enriched samples. Binding of a small peptide or drug-like organic molecule leads to changes in the chemical shift of resonances from multiple residues in the protein that can be monitored to characterize binding. Differential chemical shifts can be used to distinguish between direct protein-ligand contacts and small conformational changes of the protein induced by ligand binding. The agreement with prior solution-state NMR results indicates that the binding pocket in solid and liquid samples is similar for this protein. Advantages of different labeling schemes involving selective (13)C enrichment of methyl groups of Ala, Val, Leu, and Ile (Cdelta1) for characterizing protein-ligand interactions are also discussed. It is demonstrated that high-resolution solid-state NMR spectroscopy on uniformly or extensively (13)C-enriched samples has the potential to screen proteins of moderate size ( approximately 20 kDa) for ligand binding as hydrated solids. The results presented here suggest the possibility of using solid-state NMR to study ligand binding in proteins not amenable to solution NMR.  相似文献   

5.
6.
7.
The nuclear poly(A) binding protein PABPN1 possesses a natural 10 alanine stretch that can be extended to 17 Ala by codon expansion. The expansions are associated with the disease oculopharyngeal muscular dystrophy (OPMD), which is characterized histopathologically by intranuclear fibrillar deposits. Here, we have studied the Ala extended fibrillar N-terminal fragment of PABPN1, (N-(+7)Ala), comprising 152 amino acids. At natural abundance, cross-polarized 13C MAS NMR spectra are dominated by the three Ala signals with characteristic beta-sheet chemical shifts. In contrast, directly polarized 13C MAS spectra show a multitude of narrow lines, suggesting a large portion of highly mobile sites. Proteolytic cleavage of the protein combined with MALDI-TOF mass spectrometry revealed a protease-resistant peptide encompassing residues 13/14 to 50-52 with the poly-Ala stretch in the center. Measurements of the 1H-13Calpha dipolar couplings of 13C/15N-labeled N-(+7)Ala revealed high order parameters of 0.77 for the poly-Ala stretch of the fibril, while the majority of the residues of N-(+7)Ala exhibited very low order parameters between 0.06 and 0.15. Only some Gly residues that are flanking the Ala-rich region had significant order parameters of 0.47. Thus, site-specific dynamic mapping represents a useful tool to identify the topology of fibrillar proteins.  相似文献   

8.
We describe a two-dimensional solid-state NMR technique to investigate membrane protein topology under magic-angle spinning conditions. The experiment detects the rate of (1)H spin diffusion from the mobile lipids to the rigid protein. While spin diffusion within the rigid protein is fast, magnetization transfer in the mobile lipids is an inefficient and slow process. Qualitative analysis of (1)H spin-diffusion build-up curves from the lipid chain-end methyl groups to the protein allows the identification of membrane-embedded domains in the protein. Numerical simulations of spin-diffusion build-up curves yield the approximate insertion depth of protein segments in the membrane. The experiment is demonstrated on the selectively (13)C labeled colicin Ia channel domain, known to have a membrane-embedded domain, and on DNA/cationic lipid complexes where the DNA rods are bound to the membrane surface. The experiment is designed for X-nucleus detection, which could be (13)C or (15)N in the protein and (31)P for the DNA. Finally, we show that a qualitative distinction between membrane proteins with and without a membrane-embedded domain can be made even by using an unlabeled protein, by detection of lipid signals. This spin-diffusion experiment is simple to perform and requires no oriented bilayer preparations and only standard NMR hardware.  相似文献   

9.
10.
A solid-state NMR technique is described for establishing stereochemistry using the natural product terrein as a model compound. This method involves comparison of experimental (13)C tensor principal values with ab initio computed values for all possible computer-generated stereoisomers. In terrein the relative stereochemistry is confirmed by NMR to be 2R*,3S with high statistical probability (>99.5%). The proposed approach also simultaneously verifies the molecular conformation of the two hydroxy groups in terrein established by X-ray data. It is sufficient to use only shift tensor values at carbons 2 and 3, the stereocenters, to characterize both the stereochemistry and molecular conformations. The solid-state NMR method appears to be especially useful for determining relative stereochemistry of compounds or their derivatives that are difficult to crystallize.  相似文献   

11.
12.
Even as available magnetic fields for NMR continue to increase, resolution remains one of the most critical limitations in assigning and solving structures of larger biomolecules. Here we present a novel constant-time through-bond correlation spectroscopy for solids that offers superior resolution for 13C chemical shift assignments in proteins. In this experiment, the indirect evolution and transfer periods are combined into a single constant time interval, offering increased resolution while not sacrificing sensitivity. In GB1, this allows us to resolve peaks that are otherwise unresolved and to make assignments in the absence of multibond transfers.  相似文献   

13.
A combination of molecular modeling, DFT calculations, and advanced solid-state NMR experiments is used to elucidate the supramolecular structure of a series of benzoxazine oligomers. Intramolecular hydrogen bonds are characterized and identified as the driving forces for ring-shape and helical conformations of trimeric and tetrameric units. In fast MAS (1)H NMR spectra, the resonances of the protons forming the hydrogen bonds can be assigned and used for validating and refining the structure by means of DFT-based geometry optimizations and (1)H chemical-shift calculations. Also supporting these proposed structures are homonuclear (1)H[bond](1)H double-quantum NMR spectra, which identify the local proton-proton proximities in each material. Additionally, quantitative (15)N[bond](1)H distance measurements obtained by analysis of dipolar spinning sideband patterns confirm the optimized geometry of the tetramer. These results clearly support the predicted helical geometry of the benzoxazine polymer. This geometry, in which the N...H...O and O...H...O hydrogen bonds are protected on the inside of the helix, can account for many of the exemplary chemical properties of the polybenzoxazine materials. The combination of advanced experimental solid-state NMR spectroscopy with computational geometry optimizations, total energy, and NMR spectra calculations is a powerful tool for structural analysis. Its results provide significantly more confidence than the individual measurements or calculations alone, in particular, because the microscopic structure of many disordered systems cannot be elucidated by means of conventional methods due to lack of long-range order.  相似文献   

14.
It is shown that molecular structure and dynamics of a uniformly labeled membrane protein can be studied under magic-angle-spinning conditions. For this purpose, dipolar recoupling experiments are combined with novel through-bond correlation schemes that probe mobile protein segments. These NMR schemes are demonstrated on a uniformly [13C,15N] variant of the 52-residue polypeptide phospholamban. When reconstituted in lipid bilayers, the NMR data are consistent with an alpha-helical trans-membrane segment and a cytoplasmic domain that exhibits a high degree of structural disorder.  相似文献   

15.
Solid-state NMR spectroscopy and computational methods are used to probe the transformation of 10-hydroxy-10,9-boroxophenanthrene to its corresponding anhydride in the solid state. DFT calculations are used to assist the assignment of the NMR spectra of both these boron-containing heteroaromatic compounds, in solution and in the solid state. Solid-state NMR spectroscopy reveals that the dehydration of crystalline 10-hydroxy-10,9-boroxophenanthrene proceeds at relatively low temperatures—a transformation, that is, undetectable by X-ray diffraction and gravimetric analysis. Computational methods are used to elucidate a plausible reaction pathway for this transformation and to explain its detection only by NMR methods.  相似文献   

16.
Proton-driven 13C spin diffusion (PDSD) is a simple and robust two-dimensional NMR experiment. It leads to spectra with a high signal-to-noise ratio in which cross-peaks contain information about internuclear distances. We show that the total information content is sufficient to determine the atomic-resolution structure of a small protein from a single, uniformly 13C-, 15N-labeled microcrystalline sample. For the example of ubiquitin, the structure was determined by a manual procedure followed by an automatic optimization of the manual structure as well as by a fully automated structure determination approach. The relationship between internuclear distances and cross-peak intensities in the spectra is investigated.  相似文献   

17.
We show that the resolution of homonuclear multidimensional solid-state NMR correlation experiments can be significantly improved using transition selection and spin-state-selective polarization transfer techniques. The selection and transfer of single states allow the removal of the J-coupling contribution from the line width in both the direct and indirect spectral dimensions. This is demonstrated with a new spin-state-selective CO-Calpha correlation experiment, applied to a microcrystalline 85-residue protein. With this new sequence, all four components of the CO-Calpha cross-peaks are separated into different spectra, obtained by linear combination of four recorded data sets. Line narrowing of up to 44% was obtained on the protein sample for the spin-state-selective CO-Calpha spectrum compared to a standard spin-diffusion experiment. The new technique also allows an easy distinction between "direct" and "relayed" transfer cross-peaks.  相似文献   

18.
We report the results from a new solid-state NMR experiment, DANTE-REDOR, which can determine global secondary structure in uniformly (13C,15N)-enriched systems by simultaneously measuring distance and orientation constraints. Following a heteronuclear spin-pair selection using a DANTE pulse train, the magnitude and orientation of the internuclear dipole vector, within the chemical shift anisotropy (CSA) frame of the observed nucleus, are determined by tracking the dephasing of individual spinning sidebands under magic angle spinning. The efficacy of the experiment is demonstrated by measuring the imidazole side-chain orientation in U-[13C6,15N3]-L-histidine x HCl x H2O.  相似文献   

19.
Characterization of protein dynamics by solid-state NMR spectroscopy requires robust and accurate measurement protocols, which are not yet fully developed. In this study, we investigate the backbone dynamics of microcrystalline ubiquitin using different approaches. A rotational-echo double-resonance type (REDOR-type) methodology allows one to accurately measure (1)H-(15)N order parameters in highly deuterated samples. We show that the systematic errors in the REDOR experiment are as low as 1% or even less, giving access to accurate data for the amplitudes of backbone mobility. Combining such dipolar-coupling-derived order parameters with autocorrelated and cross-correlated (15)N relaxation rates, we are able to quantitate amplitudes and correlation times of backbone dynamics on picosecond and nanosecond time scales in a residue-resolved manner. While the mobility on picosecond time scales appears to have rather uniform amplitude throughout the protein, we unambiguously identify and quantitate nanosecond mobility with order parameters S(2) as low as 0.8 in some regions of the protein, where nanosecond dynamics has also been revealed in solution state. The methodology used here, a combination of accurate dipolar-coupling measurements and different relaxation parameters, yields details about dynamics on different time scales and can be applied to solid protein samples such as amyloid fibrils or membrane proteins.  相似文献   

20.
Solid-state nuclear magnetic resonance (NMR) spectroscopy continues to make major strides in the investigation of semiconducting materials. As an analytical technique, NMR offers an element-specific probe of virtually any chemical system and is uniquely suited to the selective study of materials exhibiting disorder or inhomogeneity, where long-range structural techniques may fail. With the advances in experimentation, hardware and high-polarization techniques realized over the past decade, challenging studies on difficult nuclei from bulk to nano-sized materials have now become practical. Below, we feature five recent works that have advanced our atomic-level understanding of new semiconducting materials using NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号