首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a novel double-clad photonic crystal fiber (DC-PCF) is proposed for achieving both high birefringence and low leakage loss. According to numerical simulation of the proposed PCF, the extraordinarily high birefringence (over 2×10−2) and low leakage loss of the order of 0.0001 dB/km over a large wavelength range are achieved simultaneously. Single-polarization single-mode (SPSM) operation with low leakage loss is also discussed and can be realized and optimized in the PCF by adopting suitable structure parameters.  相似文献   

2.
张亚妮 《中国物理 B》2013,22(1):14214-014214
A simple type of photonic crystal fiber (PCF) for supercontinuum generation is proposed for the first time. The proposed PCF is composed of a solid silica core and a cladding with square lattice uniform elliptical air holes, which offers not only a large nonlinear coefficient but also a high birefringence and low leakage losses. The PCF with nonlinear coefficient as large as 46 W 1 · km-1 at the wavelength of 1.55 μm and a total dispersion as low as ±2.5 ps · nm-1 · km-1 over an ultra-broad waveband range of the S-C-L band (wavelength from 1.46 μm to 1.625 μm) is optimized by adjusting its structure parameter, such as the lattice constant Λ , the air-filling fraction f , and the air-hole ellipticity η. The novel PCF with ultra-flattened dispersion, highly nonlinear coefficient, and nearly zero negative dispersion slope will offer a possibility of efficient super-continuum generation in telecommunication windows using a few ps pulses.  相似文献   

3.
In this paper we present the design of a modified hexagonal photonic crystal fiber (PCF) having high birefringence and a near-zero flattened dispersion. Using the finite-difference method (FDM), it is shown that the proposed multiple Gedoped core hexagonal PCF exhibits a high birefringence of order 10−3 and a nearly zero flattened dispersion in the optical coherence tomography (OCT) waveband. In addition, the proposed PCF has a confinement loss of less than 10−8 dB/m at 1.06 μm. PCFs with such properties are considered suitable for both endoscopic OCT and other experimental setups employing 1.06 μm lasers.  相似文献   

4.
A high birefringence Ge20Sb15Se65 based photonic crystal fiber (PCF) is proposed. It consists of a central defect core surrounded by two kinds of elliptical air holes with different size. The Finite Difference Time Domain method (FDTD) is used to simulate the guided modes of the designed PCF. The properties of this PCF are investigated including the birefringence, nonlinearity, and polarization mode dispersion in the mid-infrared range. The results show that for the optimized structure parameters, the highest birefringence of 0.1176 is obtained. The maximum nonlinearity coefficients of 38390 w?1km?1 and 49760 w?1km?1 for x- and y-polarization modes are achieved.  相似文献   

5.
Lin Zhao  Zhonghua Su  Yong Hao 《Optik》2013,124(24):6574-6576
Aiming at the requirement of high birefringence, a new kind of photonic crystal fiber (PCF) with octagonal and squarely lattice is proposed. In this structure, squarely lattices are added in the inner layer to obtain high birefringence. Birefringence and dispersion as a function of wavelength and size of PCF are analyzed by using Finite Element Method (FEM). Simulation results show that this kind of PCF exhibits high birefringence with a magnitude of 10?3, and one zero dispersion point is obtained simultaneously. In addition, the characteristics of PCF can be tuned by changing the size of fiber.  相似文献   

6.
A novel photonic crystal fiber (PCF) based on a four-hole unit is proposed in order to meet the requirements of high birefringence, negative dispersion and confinement loss in fiber-optic communication. The proposed design has been simulated based on the full vector finite element method (FVFEM) and anisotropic perfectly matched layers (APML). Analysis results show that the proposed PCF can achieve a high birefringence to the order of 10−2 at the wavelength of 1.55 μm, a large negative dispersion over a wide wavelength range and confinement losses lower than 10−9 dB/m simultaneously, which has important applications in polarization-maintaining (PM) fibers, single-polarization single-mode (SPSM) fibers, dispersion compensation fibers and so on.  相似文献   

7.
Properties of index-guided PCF with air-core   总被引:5,自引:0,他引:5  
In the paper, index-guided triangular PCF with air-core is introduced which guides light by total internal reflection (TIR) when the air-core is smaller than the air holes in cladding. Properties of dispersion and leakage loss are investigated using finite-element method. The total dispersion curve gets more flattened and leakage loss increases significantly as the air-core diameter increases. High birefringence PCF with elliptical air-core is put forward and the birefringence increases with the ellipticity of the air-core.  相似文献   

8.
In this article, a new simplified structure of a highly birefringent chalcogenide As2Se3 glass photonic crystal fiber (PCF) is designed and analyzed by using fully vectorial finite element method. The effective indices, confinement loss, birefringence, and chromatic dispersion of fundamental polarized mode are calculated in the proposed PCF for a wide wavelength range. To maintain the polarization in chalcogenide As2Se3 glass PCF, we enlarged two of the central air holes and reduced two transverse air holes for achieving high birefringence. This helps in creating an effective index difference between the two orthogonal polarization modes. It is also shown that As2Se3 glass PCF provides lower chromatic dispersion and less confinement loss compared to silica PCF of the same structure in wavelength range 1.3 to 1.8 μm and hence such chalcogenide As2Se3 glass PCF have high potential to be used in dispersion compensating and birefringence application in optical communication systems. In addition to this, the polarization mode dispersion (PMD) result of the proposed PCF is also reported.  相似文献   

9.
In this paper, we propose a novel photonic crystal fibre (PCF) with high phase birefringence and very low group birefringence. It is composed of a solid silica core and a cladding with helix-pattern air holes. Using a full-vector finite-element method, we study the phase and group modal birefringence of such PCF at various air-hole sizes, pitches and wavelengths. Owing to this innovative structure of air holes, a high phase to group modal birefringence rate is obtained. Its phase modal birefringence is as large as 10−4 magnitude; however, the group modal birefringence of this PCF is at 10−7-10−6. The phase birefringence is 2 orders of magnitude larger than group birefringence over a broad wavelength span, which means that the light with different polarization and effective index has almost a same group velocity. As a result, the group modal birefringence that closely relates to the polarization modal dispersion is negligible.  相似文献   

10.
Wei Wang  Bo Yang 《Optik》2012,123(18):1669-1672
Aiming at the requirement of low confinement loss and multiple zero dispersion points in fiber-optic sensing systems and optical communication networks, a new type of photonic crystal fiber (PCF) with rhombus air-core is proposed. By using finite element method (FEM), the structural and optical properties of the proposed PCF are analyzed. Simulation results reveal that the proposed PCF has lower confinement loss with 10?3 dB/m and higher birefringence. Besides, two zero dispersion points can be obtained after optimization. The proposed PCF may have important applications in fiber-optic sensing systems and other aspects.  相似文献   

11.
一种新型高双折射光子晶体光纤   总被引:2,自引:0,他引:2       下载免费PDF全文
张晓娟  赵建林  侯建平 《物理学报》2007,56(8):4668-4676
提出了一种新的高双折射光子晶体光纤结构.应用全矢量频域有限差分方法所做的数值分析表明:该结构光纤基模的两个正交偏振态不再简并,其模式呈现很强的线偏振特性,并且模式双折射与结构参数设置有密切关系.通过选择合适的结构参数,可以使之达到10-2量级,比传统的D型和熊猫型保偏光纤高出2个数量级.合理设计光纤包层的几何结构,可以取得理想的色散效果.这种结构的光子晶体光纤可用于制作具有适当色散特性或偏振特性的保偏光纤及相关光纤器件. 关键词: 光子晶体光纤 模式双折射 偏振特性 频域有限差分法  相似文献   

12.
汪静丽  姚建铨  陈鹤鸣  邴丕彬  李忠洋  钟凯 《物理学报》2011,60(10):104219-104219
提出了一种新型高双折射的混合格子太赫兹光子晶体光纤,通过对芯区亚波长尺寸的空气孔进行多种格子组合排列,增加结构的非对称性实现高的模式双折射. 全文仿真建模采用专业的有限元计算软件COMSOL Multiphysics 4.0,结果表明:混合格子太赫兹光子晶体光纤在很宽的频率范围内都具有较高的双折射(达到10-2)和低的限制损耗,且通过改变光纤的某些参数可以灵活地控制其双折射或限制损耗特性. 相比于同类光通信波段光纤,由于太赫兹波波长较大,能够降低芯区微结构加工的难度,具有可行性. 关键词: 双折射 混合格子 太赫兹光子晶体光纤 限制损耗  相似文献   

13.
We propose a high birefringence and low loss index-guiding photonic crystal fiber (PCF) using the complex unit cells in cladding by the finite-element method. Results show that the birefringence and confinement loss in such PCF fiber is determined not only by the whole cladding asymmetry but also the shape of the PCF core. The maximal modal birefringence and lowest confinement loss of our proposed structures at the excitation wavelength of λ = 1550 nm can be achieved at 8.7 × 10−3 and 5.27 × 10−5 dB/km, respectively.  相似文献   

14.
张亚妮 《物理学报》2010,59(12):8632-8639
设计了一种新型矩形点阵光子晶体光纤,该光纤纤芯缺失一根空气柱,包层沿光纤长度方向在普通矩形点阵光子晶体光纤中每两列之间隔一行插入一列空气孔而形成正方形网孔结构.采用全矢量有限元法并结合各向异性完美匹配边界条件,对该光纤的色散、双折射和约束损耗进行了数值模拟.结果发现,该光纤具有高双折射负色散效应和较强的模约束能力,约束损耗小于10-2dB·m-1,通过改变光纤结构参数(即空气孔间隔Λ和相对孔间隔d/Λ),可以调节该光纤高双折射负色散工作波长.若调整光纤结构参数Λ=2.0μm,d/Λ=0.4,该光纤在C波段(1.53—1.565μm)呈现负色散并具有负色散斜率,双折射高达10-2,非线性系数接近55km-1W-1.该光纤将在保偏光通信、色散补偿以及基于四波混频的波长转换器设计等方面具有重要的应用.  相似文献   

15.
低损宽频高双折射太赫兹光子带隙光纤   总被引:2,自引:0,他引:2       下载免费PDF全文
白晋军  王昌辉  霍丙忠  王湘晖  常胜江 《物理学报》2011,60(9):98702-098702
设计了一种低损耗、宽频段、高双折射太赫兹光子带隙光纤,呈三角晶格排列的亚波长空气孔包层实现了带隙的局域作用.利用全矢量有限元法对光纤的双折射及损耗特性进行了理论分析.结果表明,在大约0.3 THz的宽频范围内,类矩形纤芯太赫兹光子带隙光纤的损耗小于0.009 cm-1,相双折射在10-3数量级,群双折射可达10-2数量级. 关键词: 太赫兹 太赫兹波导 光子晶体光纤 双折射  相似文献   

16.
An extruded elliptical hole photonic crystal fibers PCF with square air-core is proposed. By using a full vector finite-element method FV-FEM and anisotropic perfectly matched layers APML, the structure and optical properties of the proposed PCF are analyzed. Simulation results show that the birefringence of the proposed photonic crystal fiber can be up to the order of 10−2, and has a flattened dispersion from 1.20 μm to 1.80 μm. The proposed PCF may have important application in super-continuum SC generation, dispersion compensation, fiber-optic sensing systems and other aspects.  相似文献   

17.
In this paper, we proposed a dual-enhanced core photonic crystal fiber (PCF) with high birefringence and ultra-high negative dispersion for dispersion compensation in a polarization maintained optical system. Using finite difference time domain (FDTD) method, we presented dispersion compensating PCF (DC-PCF) with negative dispersion between −1650 ps nm−1 km−1 and −2305 ps nm−1 km−1 in C-band and particularly −2108 ps nm−1 km−1 in λ = 1.55 μm wavelength. By this method, we can compensate dispersion in 124 km long span of a conventional single mode fiber (SMF) by 1 km-long of the DC-PCF at λ = 1.55 μm wavelength. Moreover, fundamental mode of the proposed PCF can induce birefringence about 3.5 × 10−3 at 1.55 μm wavelength.  相似文献   

18.
In this paper, we present a dispersion controlling technique with a multiple defect-core hexagonal photonic crystal fiber (MD-HPCF). By omitting air holes in the core region of the conventional HPCF and adjusting the size of air holes around the newly formed core, we can successfully design low flattened dispersion PCF with low confinement loss, as well as high birefringence. The low flattened dispersion feature, as well as the low confinement losses and high birefringence are the main advantages of the proposed PCF structure, making it suitable as chromatic dispersion controller, dispersion compensator, and/or polarization maintaining fiber.  相似文献   

19.
In this paper, we present and explore a new hybrid cladding design for improved birefringence and highly nonlinear photonic crystal fibers (PCFs) in a broad range of wavelength bands. The birefringence of the fundamental mode in such a PCF is numerically analyzed using the finite element method (FEM). It is demonstrated that it is possible to design a simple highly nonlinear hybrid PCF (HyPCF) with a nonlinear coefficient of the about 46 W−1 km−1 at a 1.55 μm wavelength. According to simulation, the highest modal birefringence and lowest confinement loss of our proposed structure at the excitation wavelength of λ = 1.55 μm can be achieved at a magnitude of 1.77 × 10−2 and of the order less than 102 dB/km with only five rings of air-holes in the fiber cladding.  相似文献   

20.
谢丹  张惠敏  熊磊 《光学技术》2017,43(2):166-168
设计了一种基于四孔单元的光子晶体光纤,它可以满足光通信系统中高双折射率、负色散和低限制损耗的要求,比起通常的三角结构光纤有着更高的双折射率,并且结构制作也较简单。采用全矢量有限元法和各项异性完美匹配层法对所设计的光纤进行了仿真研究。仿真结果表明:该光纤在1.55μm波长处可获得10~(-2)数量级的双折射率,在较宽广的波段范围具有大的负色散,限制损耗低于10~(-9)dB/m;该光纤在保偏光纤、单极化单模光纤、色散补偿光纤等方面具有重要的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号