首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《光学学报》2010,30(9)
论述了双通道头盔显示器光学系统的结构特点。根据对双通道头盔显示器应用要求的讨论,确定了它的技术指标。分析了离轴像差的特性,并在光学系统合适的位置处使用合理的自由曲面面型,有效地校正了离轴像差。设计的离轴双通道头盔显示器光学系统的技术指标为视场40°×30°,出瞳直径15mm,焦距26.4mm,眼点距25mm,波长540~560nm,后截距大于3mm,眼分辨率满足在0.88lp/mrad空间频率处的调制传递函数(MTF)值大于0.1。该系统的结构紧凑(系统尺寸70mm×122mm),重心位置适当,可以内嵌入头盔侧面使用。  相似文献   

2.
李华  张新  王超  史广维  付强 《光学学报》2014,(3):222-227
为了解决传统头盔显示器大出瞳距、大视场与轻型化、小型化间的矛盾,采用径向基函数表征自由曲面设计了一款头盔显示器光学系统。详细论述了径向基函数表征自由曲面的原理,分析了光学系统像差校正方法。在设计中,尝试了一种方法来快速地确定优化起点,分析了该光学系统的成像质量。该光学系统的视场为45°×32°,出瞳大小为15mm,出瞳距为50mm。在奈奎斯特频率处,全视场的调制传输函数(MTF)值大于0.6。在(-22.5°,16°)视场处有最大畸变值-1.54%。系统尺寸56mm×128mm,重量136g。优化设计结果表明,该全息头盔显示光学系统像差小,可以较好地为使用者提供清晰的字符信息或者视频图像。该头盔显示光学系统成像质量好,体积小重量轻,可以应用于新一代机载头盔显示技术。  相似文献   

3.
基于Ritchey-Chretion系统,设计了具有三块球面校正镜组件的折反式光学系统,所设计的光学系统焦距为1000mm,F数为5,谱段范围为450~900nm,视场角2.3°,设计结果表明:该系统在空间频率为77lp/mm时,面中心遮拦为15%时,各视场MTF优于0.47,成像质量达到衍射极限,光学系统畸变量小于0.5%,同时该系统具有结构简单、体积小、重量轻等优点,适合在轻小型空间相机上使用.  相似文献   

4.
折/衍混合微光夜视头盔显示器光学系统设计   总被引:9,自引:4,他引:9  
张慧娟  王肇圻  卢振武 《光学学报》2004,24(10):393-1396
设计了穿透式双通道单目微光夜视头盔的光学系统。其中微光物镜视场角为± 14°,f数为 1.4 ,含有一个衍射面。设计结果可兼容输入面尺寸为18mm ,面型为平面的二代和三代微光像增强器 ;最大畸变小于 0 .5 % ,可用于夜间精确瞄准与测量。考虑黑暗环境使用的安全问题 ,显示系统采用穿透式双通道单目光学系统 ,实现内部图像和外部真实世界的同时观察。显示系统的特性参量为 :出瞳尺寸为 15mm (H)× 10mm (V)、视场为[± 14°(H) ]× [± 10° (V) ]、出瞳距离为 2 5mm。采用全息组合器大大提高能量利用率。设计结果系统角分辨力为0 .6mrad ,最大畸变为 3%。显示系统结构紧凑 ,可与输出面尺寸为18mm的图像源相连。  相似文献   

5.
折/衍混合增强现实头盔显示器光学系统设计   总被引:12,自引:2,他引:10  
利用衍射光学元件独有的负色散性质和可实现光波面任意相位调制的特点 ,在光学系统中引入衍射面 ,设计了出瞳距离为 2 6mm ,出瞳直径为 12mm ,视场角为 2 0°(H)× 15 .4°(V)的用于增强现实的折 /衍混合穿透式双通道头盔显示器的光学系统。设计的系统内、外两个光通道的光能量利用率分别达到 1/4和 1/2。系统分辨力适合采用分辨率为 80 0× 6 0 0、像元尺寸为 33μm的图像源。设计结果 ,系统镜头直径小于 4 6mm ,满足用于双目显示的要求。设计结果表明 ,该系统不仅在结构上满足使用者因素的要求 ,而且成像质量接近衍射极限 ,具有很高的分辨率 ,色差和畸变非常小。设计结果完全满足用于增强现实的要求。  相似文献   

6.
大出瞳自由曲面头盔显示器光学系统的设计   总被引:1,自引:0,他引:1  
杨波  韦晓娜  张薇  庄松林 《光子学报》2011,40(7):1051-1054
头盔显示器系统由于自身对尺寸和重量有严格要求,采用自由曲面器件可以起到减少透镜片数,从而缩小系统尺寸、减轻重量等作用.针对目前单片式自由曲面棱镜解决方案存在的出瞳直径小,棱镜自由曲面光学面加工定位困难等问题,介绍了一种大出瞳自由曲面头盔显示器光学系统的设计方法,并给出了设计结果.设计方案采用了自由曲面棱镜和薄透镜的双片...  相似文献   

7.
轻小型星敏感器光学系统的设计   总被引:7,自引:3,他引:4  
吴峰  沈为民 《光子学报》2004,33(11):1336-1338
介绍了星敏感器的工作原理,对光学系统的指标进行详细的分析,给出光学系统的设计结果和评价.设计得到的镜头焦距22.7 mm,相对孔径1:1.4,视场角17.1°×17.1°(圆视场角24°),而长度仅45.3 mm.由七个球面透镜组成,光阑放在第二、三透镜之间.  相似文献   

8.
为满足具有连续变焦和昼夜合一功能的光电瞄具的轻小型要求,采用前固定组为调焦组的四组三联动结构的物镜,通过视场、作用距离和CCD探测器相关参数确定所需焦距范围,使用高斯括弧法对四组三联动变焦结构进行高斯光学分析,通过调焦一次实现可见光波段到红外波段的转换。最终设计的光学系统的工作波段为0.48~0.68μm和0.80~0.90μm,调焦量仅为0.26 mm,光圈为F5.0~F6.5,变焦范围为25~250 mm,满足短焦探测和长焦识别距离不小于2 km的要求。此外,该物镜的光学总长为199 mm,最大通光孔径为58.1 mm,镜片总质量为203.6 g,满足系统轻小型需求,并且在不同工作波段下变焦全程成像质量良好,从公差分析结果可以看出所设计系统具有优良的可实现性。  相似文献   

9.
为了满足轻小型机载遥感平台对成像光谱仪高分辨率和小型化的要求,采用平场Schwarzschild望远系统和基于凸面光栅的Offner光谱成像系统匹配的结构形式,设计了一个工作谱段为0.4~2.5μm、相对孔径D/f=1/3、全视场2ω=7.2°的机载高分辨率成像光谱仪光学系统。分析了Schwarzschild望远系统和Offner光谱成像系统的特点和像差校正方法,利用ZEMAX光学设计软件进行了光线追迹和优化设计,给出了系统的调制传递函数曲线(MTF)和点列图,并进行了分析和评价。设计和分析结果表明,机载高分辨率成像光谱仪可以实现0.6m的空间分辨率和全谱段5nm的光谱分辨率,满足机载宽刈幅遥感成像的应用要求,光学系统结构简单紧凑,具有接近衍射极限的优良像质,易于加工和装调实现,具有较高的实际应用价值。  相似文献   

10.
折/衍混合超轻小型投影式头盔光学系统设计   总被引:3,自引:1,他引:3  
投影式头盔系统具有成像质量高,结构轻便等特点。分析投影式头盔光学系统设计参数的选择原则,并基于投影式物镜引入对角为1.55 cm的新型OLED显示器作为图像源,采用折射/衍射混合结构来减轻光学系统的体积和重量。通过ZEMAX软件对系统进行优化,设计得到一款质量仅1.35 g,直径11.32 mm的超轻小型三片式头盔显示器光学系统。系统中心视场MTF在32lp/mm处达到了0.52,在该空间频率下对应人眼的分辨率为1.85,′在大视场处,子午和弧矢MTF也均大于0.2,分辨率满足SVGA显示模式要求。  相似文献   

11.
头盔显示器     
头盔显示器头盔显示器(HMD)使驾驶员真正实现了抬头飞行,不管飞机的航行和观察方向如何,HMD均能提供重要的速度、航向和瞄准信息。在一些国家已经使用几种简单的头盔瞄准系统,另有一些较为复杂的显示器头盔已经临近生产准备阶段。早期的HMD是一些笨重的家伙...  相似文献   

12.
虚拟现实头戴显示器(HMD)的光学系统应具有较大的视场角和出瞳,同时应具有重量轻和厚度薄的特性,从而适应人体的佩戴需要。为了同时满足这些要求,详细描述了一种基于初级像差理论的头戴显示器光学系统设计方法。根据这个方法,用两种聚合物材料聚甲基丙烯酸甲酯(PMMA)和聚碳酸酯(PC),设计了双片式的头盔系统,其出瞳直径为8 mm,视场角为70°。系统总长小于70 mm,镜头的总质量小于30 g。全视场相对照度大于0.4,其轴上像差和轴外像差都得到了有效校正,边缘视场点列图光斑半径在70μm左右,各个视场的调制传递函数(MTF)曲线分布较为均匀,同时中心视场和边缘视场的MTF值在8 cycle/mm处分别为0.6和0.4左右,最大畸变小于2%,实际加工的系统对标准分辨率板的成像像质能够满足使用要求。  相似文献   

13.
全景三维立体头盔显示光学系统设计   总被引:1,自引:0,他引:1  
为了满足全景三维立体头盔显示器(HMD)对大视场(FOV)、小畸变、高分辨率以及轻量化的要求,设计了全景三维立体HMD的目视光学系统。采用4×3阵列式排列的12组相同的FOV角为33°×24°的高质量成像的目镜光学系统拼接成单眼目视光学系统,实现系统的大FOV设计。利用二元衍射面和非球面校正目镜光学系统的初、高级单色像差以及色差;使用有机光发射二极管(OLED)微显示器作为图像源,设计结果表明:单眼目视光学系统水平FOV达到120°,垂直FOV为60°,角分辨率为43pixel/(°);传递函数在45lp/mm处轴上FOV高于0.68,周边FOV高于0.45,系统畸变小于0.2%;系统的双目FOV为160°×60°,双目FOV重叠为80°×60°,系统重量约为91.2g。系统设计满足头盔显示光学系统的成像要求,并且实现了系统的轻量化以及低成本。  相似文献   

14.
大视场双目头盔投影光学系统设计   总被引:1,自引:7,他引:1  
张慧娟 《光子学报》2007,36(7):1264-1267
设计了一种新型的头盔投影光学系统,解决了头盔系统中大视场和双目实现之间的设计矛盾,且有较小的重量和尺寸.系统的特性参量为:视场角60°,有效焦距30 mm,出瞳距离25 mm,出瞳直径12 mm.该系统由折/衍混合双高斯镜头、半透半反镜和回射屏组成.像差分析结果表明,系统的最大像散为0.27 mm,垂轴色差小于2.7 μm,畸变小于3.8%,最小分辨角为0.5 mrad,成像质量高.  相似文献   

15.
为了解决传统成像光谱仪难以实现光谱和图像信息实时获取的问题,设计一款可见/近红外宽谱段视频型成像光谱仪系统。系统利用多狭缝分光成像技术,将目标光谱图像进行区域划分,代替传统的推帚型成像光谱仪,实现光谱维的大视场成像。采用低色散光学玻璃和双胶合透镜实现宽谱段光学系统的像差校正。前置望远物镜系统采用复杂的双高斯结构,实现小畸变设计和不同视场狭缝处能量的均匀分布。为了同时获取高空间分辨率的实时视频监控和高光谱分辨率,利用分光棱镜将前置望远物镜的像分为两路,一路直接由高分辨率全色相机接收,另一路进入分光系统由灰度相机接收。采用三块棱镜作为分光元件,通过优化材料组合和实际光线控制,获得了萤石-熔石英-萤石理想棱镜组合,实现了光路同轴性和良好色散线性度。设计结果为光学系统的光谱范围为400~1000 nm,F数为3.5,前置望远物镜奈奎斯特频率处设计调制传递函数(MTF)大于0.5,畸变小于0.1%,像面照度均匀性高于98%。整个系统奈奎斯特频率处设计MTF大于0.44,平均光谱分辨率为10 nm。  相似文献   

16.
基于视网膜投影显示的头盔显示器设计   总被引:1,自引:0,他引:1       下载免费PDF全文
传统的透射型头盔显示器虽然可以显示虚拟图像,但当眼睛调节焦距时无法清晰显示虚拟图像,研究一种新型的透射型头盔显示技术,其特点是既可以看到外部景物,也可以同时看到微型显示芯片上所显示的虚拟图像,并且虚拟图像独立于人眼的调节。介绍显示技术的原理,用光学设计软件Zemax完成整体光学系统设计,优化后系统达到衍射极限,滤波投影系统中MTF在60 lp/mm处达到了0.7;用Autocad软件设计了头盔显示器结构。光路成像实验结果表明:设计的系统可以看到外界图像和虚拟图像,当眼睛对外界景物聚焦时,外界景物与虚拟图像都保持清晰,眼睛对外界景物离焦时,外界景物变得模糊而虚拟图像仍然保持清晰。  相似文献   

17.
用于增强现实的头盔显示器的设计   总被引:11,自引:0,他引:11  
穿透式双通道头盔显示器 (HMD)是增强现实系统中的关键部件。本文给出了一种新颖的穿透式双通道头盔显示器的设计方案 ,使得当在用于增强现实系统中时 ,能够获得更大的透过率 ,以获得清晰的外部世界与内部产生的场景信息。同时通过成功的光学设计 ,获得了大视场、高分辨率的光学系统  相似文献   

18.
王贞 《应用光学》1991,12(5):15-18
本文介绍了几种头盔式显示器的光学设计方案,并从提高系统的分辨率、对比度,重量等各方面作了比较。  相似文献   

19.
交叉非对称型Czerny-Turner光谱仪光学系统设计   总被引:1,自引:0,他引:1  
根据Czerny-Turner结构光谱仪工作原理,以便携式微型光学系统为设计目标,设计了一种光谱范围为200900nm的交叉非对称型Czerny-Turner光谱仪光学系统.通过分辨率、光谱范围等设计要求确定光谱仪大致结构后,引入初级像差对初始结构进行进一步优化.首次提出将球差约束条件与光阑面选取相结合,设计流程确定准直镜通光口径、光栅初始尺寸及聚焦镜中心波长对应口径,继而结合彗差约束条件,确定球面镜离轴角,并基于几何光学确定聚焦镜初始通光口径的方法.利用ZEMAX软件对初始参量进行模拟优化,并采用自主研制的样机进行光谱测量,分析结果表明,该光学系统能够在狭缝宽度为25μm,光栅常数为1.667μm/line条件下,实现中心波长分辨率优于1nm,边缘波长分辨率优于1.5nm.  相似文献   

20.
非对称光学系统的ABCD定律   总被引:4,自引:1,他引:3  
用矢量分析的方法简明地推出了一般非对称光学系统的衍射积分公式.在此基础上,借助光束复曲率张量的概念,给出非对称光学系统的张量形式ABCD定律.最后给出简单的应用例子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号