首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 177 毫秒
1.
针对某700mm口径高分辨率光学成像望远镜,提出了一种结构设计方案。对主镜支撑采用9点whiffle-tree底支撑加球头芯轴侧支撑的结构方案,保证主镜具有高面形精度;望远镜镜筒采用碳纤维桁架式结构,既满足望远镜整体重量较轻,又可以保证系统刚度;建立了望远镜有限元模型,分析主镜支撑面形、主次镜相对偏心及系统整体模态特性,其中主镜支撑面形精度可达到λ/40,主、次偏心为0.015mm(水平状态)、0.008mm(竖直状态);使用激光干涉仪及平行光管对望远镜光学指标进行定量检测,光学系统RMS可达到λ/14,鉴别率板检测望远镜分辨率可达到46lp/mm,均接近光学极限水平。为同类望远镜的结构设计提供一定参考价值。  相似文献   

2.
针对某700mm口径高分辨率光学成像望远镜,提出了一种结构设计方案。对主镜支撑采用9点whiffle-tree底支撑加球头芯轴侧支撑的结构方案,保证主镜具有高面形精度;望远镜镜筒采用碳纤维桁架式结构,既满足望远镜整体重量较轻,又可以保证系统刚度;建立了望远镜有限元模型,分析主镜支撑面形、主次镜相对偏心及系统整体模态特性,其中主镜支撑面形精度可达到λ/40,主、次偏心为0.015mm(水平状态)、0.008mm(竖直状态);使用激光干涉仪及平行光管对望远镜光学指标进行定量检测,光学系统RMS可达到λ/14,鉴别率板检测望远镜分辨率可达到46lp/mm,均接近光学极限水平。为同类望远镜的结构设计提供一定参考价值。  相似文献   

3.
大口径天文薄镜面磨制试验   总被引:3,自引:0,他引:3  
介绍了采用薄镜面主动支撑技术来加工大口径天文薄镜面的试验情况。试验镜为一弯月型球面反射镜.直径为Ф1035mm,镜面曲率半径为3220mm,径厚比约为40:1。在磨制过程中,有55个分离支撑点支撑存镜子背面。支撑点的位置与支撑力的大小通过有限元分析计算确定,其中3个为固定支撑点.另外52个为主动支撑点。每个支撑点位置设置了力促动器,调节力促动器加力的大小。可以主动改正镜面的低频误差。加工后最后达到的面形精度:λ=632.8nm,面形误差(RMS)小于等于λ/21.5,局部高频误差(RMS)小于等于λ/23。试验证明所采用的方法适合于大口径天文薄镜面的加工。  相似文献   

4.
在地面环境检测的空间反射镜面形主要是镜面加工残差和重力支撑变形等耦合的结果.为实现1.2m轻量化空间反射镜的重力支撑变形分离,通过测量镜面在等梯度支撑力下的面形,由镜面力学响应得到镜面畸变和支撑力变化的关系,以此作为界定有限元分析结果和优化有限元模型的依据.将由修正模型得到的重力支撑面形畸变从反射镜面形检测结果中移除,即可得到反射镜加工残差.研究表明,修正后的模型对100N支撑力变化引起的面形畸变与实测结果误差≤0.001λ,面形检测为1/30λ的空间反射镜,其无重力和支撑影响的加工残差优于1/40λ.该结果不仅能指导反射镜面形的高精度抛光,还可提高最终系统装调精度.  相似文献   

5.
Φ1.2m球面镜支撑的力学分析和试验研究   总被引:1,自引:1,他引:0  
通过使用有限元软件对大镜面进行模拟计算和分析,可以预先确定加工和装校支撑方法是否符合设计要求,从而有效地减少了设计的盲目性。分析计算了口径为1 2m的球面镜在不同工况下的受力变形。按选择的支撑和检验方式进行了装校试验,实际的球面镜检验结果验证了分析的正确性。  相似文献   

6.
光学遥感器轻质反射镜的结构—热优化设计   总被引:3,自引:2,他引:1  
吴清彬  陈时锦  董申 《光学技术》2003,29(5):562-564
针对在轻质反射镜结构设计中通常只根据力学性能对镜体结构参数进行优化的现状,提出了对轻质反射镜进行结构 热优化设计的理论与方法。通过建立反射镜体的参数化有限元模型,在保证一定的轻量化率和较小的自重变形的前提下,以减小反射镜体的热变形为优化目标,对镜体结构参数进行二次优化设计,结果表明经过结构 热优化设计的镜体相比于原设计方案,在相同的波面误差指标下能够承受更大的温度载荷,热稳定性得到显著提高。  相似文献   

7.
一种精确测量光学球面曲率半径的方法   总被引:3,自引:0,他引:3  
在简要总结各种检测光学球面曲率半径方法优缺点的基础上,提出了利用激光跟踪仪和激光干涉仪测量光学球面曲率半径的新方法。首先,通过激光跟踪仪精确定位测量干涉仪出射球面波前的焦点和待测球面镜的曲率中心点坐标,再调整待测球面镜与干涉仪的相对位置,使待测球面镜达到零条纹干涉状态,用激光跟踪仪测定此时待测球面镜上多点的位置坐标,通过计算分析即可得到待测球面镜的曲率半径。研究和分析了这种测量光学球面曲率半径方法的基本原理,并提出了针对凸球面镜曲率半径的多区域测定平均综合优化的方法。结合实例对一口径为400mm的球面透镜进行了曲率半径的测量,测量得到其两面曲率半径分别为1022.283mm(凸面)和4069.568mm(凹面),并将该透镜进行了轮廓法测量对比,其相对误差都小于0.05%。  相似文献   

8.
《光学技术》2013,(3):212-216
大口径凸非球面检验是非球面镜制造领域的难题之一。结合项目中一块相对孔径F/0.75,口径为332mm凸抛物面副镜的研制实例,在分析传统检验方法优缺点及适用性后,针对性地提出了一种类Offner透射补偿检验的新方法。基于三级像差理论出发求解其初始结构,使用Zemax软件分析与优化,从设计结果上看,此方法补偿精度很高,有效地补偿了非球面的法线像差。用蒙特卡洛方法分析给出公差分配方案,并研制出类Offner透射补偿器,用于凸抛物面镜的面型检验,表明此检验方法是完全可行的。实际加工完成后,用4D干涉仪检测镜面的面形精度达到RMS=0.0183λ优于λ/50(λ=632.8nm)。  相似文献   

9.
计算超薄镜最接近球面的非球面梯度法及有限元分析   总被引:1,自引:0,他引:1  
利用超薄镜的弹性变形,通过主动光学技术将超薄球面镜变形为所需精度的非球面镜,可以避开大口径超薄非球面镜的制造难题。在分析了传统的非球面超薄镜最接近球面选择原则的基础上,提出了以非球面梯度作为选择原则的依据。针对一个实例,用非球面梯度法和最小二乘法分别求出两个最接近球面并对它们进行有限元法的变形分析,对它们变形后的面形精度和最大应力进行了比较。结果表明,在相同的边界条件、加载个数和加载位置的条件下,以非球面梯度法求出的最接近球面在变形后不仅应力小,且更有利于提高面形精度。  相似文献   

10.
基于最小二乘法,数值分析了变形镜驱动器位置偏差与驱动器排列方式、数量及交连值等对变形镜相位拟合效果的影响。研究结果表明:对于随机产生的低频相位,在变形镜驱动器中心位置引入位置偏差后,方形排列变形镜的抗扰动能力优于三角排列方式;驱动器单元数越多,变形镜抗扰动能力也越强;交连值在一定范围增加时,变形镜的抗扰动能力随之增强。  相似文献   

11.
针对极大望远镜矩形准直镜设计了一种新型柔性支撑系统,即由6根空心圆柱杆为支撑主体的侧面支撑结构.利用多目标优化算法对柔性支撑系统的结构参数和位置参数进行优化设计,并对优化后的柔性支撑系统进行稳定性研究.优化后的准直镜柔性支撑系统在自重条件下镜面最大PV值为168.23 nm,RMS值为30.306 nm,质量为229....  相似文献   

12.
钟显云  范斌  曾志革  周家斌 《光学学报》2012,32(3):322002-208
大口径轻质反射镜采用柔性支撑结构可以降低外界力载荷、惯性载荷及热载荷的负作用,从而保证光学系统的成像质量。为消除加工、检测与系统装调过程的定位误差,研究了应用于计算机控制能动磨盘加工(CCAL)技术抛光的柔性限位支撑模型。利用有限元分析软件(Ansys),分析φ1.8m轻质镜采用柔性限位支撑时,CCAL技术抛光引起轻质镜的最大倾斜量、最大主应力以及主镜面变化范围,对支撑盘的口径及位置进行了优化设计,模拟仿真18点弹簧在不同压缩量下的镜面变形。仿真分析结果表明,柔性限位支撑的结构刚度、轻质镜底板倾斜量满足能动磨盘加工条件,最大主应力强度远小于主镜的许用应力,主镜面变形符合加工要求。  相似文献   

13.
为实现λ/100峰谷值(PV)的光刻投影物镜面形检测精度要求,深入分析了自重变形对大口径超高精度Fizeau干涉仪的光学性能产生的影响.设计的球面标准具结构,其系统波像差达到λ/1000(PV)、像方数值孔径(NA)值为0.36,用于口径超过300 mm的球面镜面形检测.使用Patran/Nastran软件通过有限元方...  相似文献   

14.
针对常规红外干扰技术存在的能量无法集中、隐蔽性差且无法进行变倍切换等实际问题,提出一种离轴双反射式激光干扰扩束系统的设计方案,并对离轴双反射镜组,转向平面反射镜及支撑固定机构等主要组成部分进行了光机结构设计.为实现扩束比的变倍切换功能,采用新型离轴副镜组件设计;为减小镜面变形,离轴主副镜组均采用微应力设计.分析结果表明,在-20~+60℃温度范围内,主副镜组轴向最大位移小于等于0.01mm,主副镜组的反射镜面形误差小于等于71.9nm;系统一阶固有频率108.3Hz,其支撑结构应力响应远小于材料的屈服极限.实际测试发现,系统可实现1:10.02(19.92,25.02)扩束比,满足设计技术指标要求.分析及试验结果表明,系统光机结构设计合理,完全满足实际应用要求.  相似文献   

15.
针对同轴三反式空间光学遥感器对大口径主反射镜组件的高刚度、高强度、高热稳定性等特殊要求,提出一种基于Cartwheel型双轴柔铰的三点柔性支撑结构。首先利用无量纲方法研究了单个柔性支撑的柔度特性,然后利用有限元方法对反射镜组件的静力学、动力学与热特性进行灵敏度分析,确定了支撑结构中柔性环节的几何尺寸参数,并进行了有限元数值仿真。最后,利用面形值为λ/40均方根(RMS)的非球面镜进行了反射镜组件面形检测实验并利用等效球面镜组件进行了动力学实验。仿真与实验结果表明:当柔性环节尺寸为:壁厚t=8mm,直梁高度h=4mm,直梁长度L=8mm时,在正交三向自重与15℃稳态温升作用下,反射镜面形精度RMS小于12nm;反射镜组件一阶固有频率实验值为296Hz,与仿真结果相差6%,能够满足使用要求。  相似文献   

16.
为实现对大尺寸光学材料及系统元件的高精度对准测试,设计了一种新型Φ200 mm口径长焦距准直干涉测试装置。该装置以球面标准镜作为参考镜,结合斐索型透射式干涉机制和长焦距准直测试原理对凹球面大曲率半径光学元件进行面形精度检测,最大测试口径为Φ226.67 mm,且球面标准镜和球面标准反射镜同轴共球心,大幅度减小了测试空腔距离。结果表明,该系统空腔测试精度PV值为0. 097λ@632. 8 nm,RMS值为0. 013λ@632. 8 nm,系统重复稳定性优于λ/500@632. 8 nm,可实现曲率半径为7 500~8 500 mm测试,且大曲率半径测试误差小于1/1 000。  相似文献   

17.
通过动态链接库方式在Zemax中建立Q-type非球面接口,利用Q-type非球面设计了一款工作在可见光波段,垂直半视场为30°~110°,焦距为-1.25 mm,F数为5,系统总长为28.7 mm的全景环带光学系统(PAL)。该光学系统由7片透镜组成,包含6片球面镜和一片两面均为Q-type面型的非球面镜片。对设计结果进行了分析,全视场FTheta畸变小于1%,在奈奎斯特空间频率83 lp/mm处调制传递函数(MTF)高于0.5,成像效果接近衍射极限。为验证Q-type非球面在PAL设计中的优越性,实际设计了一个与Q-type面型PAL具有相同参数的偶次非球面PAL,对两者进行了分析比较。结果表明,在相同的计算平台下,Q-type非球面多项式系数的有效数字比对应的偶次非球面的多3~6位,有效减小了优化过程中计算机数字系统截断误差对优化过程的影响,有利于提高光学系统优化设计效率、提高非球面光学零件的加工精度和检测精度。  相似文献   

18.
为了减小多节点激光通信天线的工作包络尺寸并提高二维摆镜的运动控制精度,提出了一种紧凑型摆镜组件。采用高体分铝基碳化硅(SiC/Al)支撑板与H-K9L反射镜直接黏接的方案,提高了摆镜面形的热稳定性,摆镜回转中心至镜面的距离被缩短至20mm。黏接面采用三点薄圆环的设计,在保证摆镜组件动态刚度的前提下有效降低了黏接应力对摆镜面形的影响。有限元分析结果表明,摆镜组件的基频为1319.96Hz,在(20±5)℃工作温度范围内,面形峰谷(PV)值优于λ/4(λ=632.8nm),面形均方根(RMS)值优于λ/22。使用ZYGO激光干涉仪对摆镜的面形进行检测,结果表明,在(20±5)℃温度范围内,摆镜面形的PV值优于λ/4,RMS值优于λ/29,满足激光通信天线RMS为λ/15的指标要求。  相似文献   

19.
为了提高用于天文自适应光学系统的单压电变形镜的校正能力,提出了一种直径为75 mm且包含214个单元的带边缘驱动的单压电变形镜,单压电变形镜的边缘由数个压电堆栈执行器支撑.首先,通过有限元方法对变形镜进行仿真建模,分析比较三点、六点能动支撑对变形镜性能的影响.之后制备了三点、六点边缘驱动的变形镜样机.最后,利用波前传感器测试了边缘执行器对低阶像差的校正能力.实验结果表明:在0~100 V电压下,三点能动支撑与六点能动支撑变形镜均可重构大于12μm的倾斜像差,对应的归一化残余误差小于0.06,六点致动对像散和三叶草像差也具有较好的校正能力,证明边缘执行器可提高单压电变形镜的校正能力.  相似文献   

20.
如何有效校正随人群起伏很大的人眼像差,提高视网膜高分辨率成像技术的人群适用范围是临床应用面临的最大难题。现有的单一波前校正器无法同时清除高阶和低阶视觉像差。针对人眼高阶像差校正需求,研制成功了169单元3 mm极间距分立式压电变形镜,并与大行程Bimorph变形镜组合,建立了一套双变形镜的人眼视网膜成像系统。系统可实现对离焦小于±4.5 D、散光小于±3.0 D的低阶像差及前8阶Zernike像差的有效校正,极大地提高了系统的人群适用范围和成像质量。以低阶像差大小作为入选标准,进行小样本量人眼视网膜成像实验,获得了近衍射极限的视网膜图像。该系统适用范围明确,便于后续临床应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号