首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Collisionally activated decomposition (CA) spectra of [C4H8O]+˙ ions and the products of their metastable decompositions are used to refine a previously presented picture of the reactions of [C4H8O]+˙ ions. Metastable [C4H8O]+˙ isomers predominantly rearrange to the 2-butanone ion and decompose by loss of methyl and ethyl, although up to 38% of the methyl losses take place by other pathways to form \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm{CH}}_{\rm{2}} = {\rm{CHCH = }}\mathop {\rm{O}}\limits^{\rm{ + }} {\rm{H}}{\rm{.}} $\end{document} . The CA spectra of many of the [C4H8O]+˙ ions with the oxygen on the first carbon are very similar, consistent with those ions isomerizing largely to common structures before or after collision. However, several of these ions have unique CA spectra, so they must remain structurally distinct from the majority of the [C4H8O]+˙ ions below energies required for decomposition. The CA spectra of ions with the oxygen on the second carbon are distinct from those of ions with the oxygen on the first carbon, so there is limited interconversion of the non-decomposing forms of the two types of ions. A potential energy diagram for the reactions of metastable [C4H8O]+˙ ions is constructed from appearance energy measurements. As would be expected, the relative importances of most of the [C4H8O]+˙ isomerizations seem to be inversely related to the activation energies for those processes. Some parallels between the isomerizations of [C4H8O]+˙ ions and those of related ions are pointed out.  相似文献   

2.
The use of kinetic energy release measurements in the structural characterization of ions formed in the mass spectrometer and in the determination of fragmentation mechanisms is demonstrated. In combination with information on the mode of energy partitioning in some of these reactions this allows the following conclusions: (i) The metastable [C7H8]8˙ ions formed from toluene, cyclohepatatriene, n-butylbenzene, the three methyl anisoles, methyl tropyl ether and benzyl methyl ether all undergo loss of H˙ from a common structure. (ii) The metastable [C7H7]+ ions generated from the same sources and from benzyl bromide, benzyl alcohol, p-xylene and ethylbenzene appear to undergo loss of acetylene from both the benzylic and the tropylium structures. (iii) The metastable [C7H7OCH3]+˙ ether molecular ions undergo loss of CH3˙ by two types of mechanism, simple cleavage to give the aryloxy cation (not observed for benzyl methyl ether) and a rearrangement process which appears to lead to protonated tropone as the product. (iv) Loss of formaldehyde from the metastable [C7H7OCH3]+˙ molecular ions involves hydrogen transfer via competitive 4- and 5-membered cyclic transition states in the case of the anisoles and in the case of methyl tropyl ether, while for benzyl methyl ether, hydrogen transfer in the nonisomerized molecular ion occurs via a 4-membered cyclic transition state to yield the cycloheptatriene molecular ion.  相似文献   

3.
The losses of methyl and ethyl through the intermediacy of the [2-butanone]+˙ ion are shown to be the dominant metastable decomposition of 14 of 19 [C4H8O]+˙ ions examined. The ions that decompose via the [2-butanone]+˙ structure include ionized aldehydes, unsaturated and cyclic alcohols and enolic ions. [Cyclic ether]+˙ [cyclopropylmethanol]+˙ and [2-methyl-1-propen-1-ol]+˙ ions do not decompose through ionized 2-butanone. The rearrangements of various [C4H8O]+˙ ions the the 2-butanone ion were investigated by means of deuterium labeling. Those pathways involve up to eight steps. Ions with the oxygen on the end carbon rearrange to a common structure or mixture of structures. Those ions which ultimately rearrange to the [2-butanone]+˙ ion then undergo oxygen shifts from the terminal to the second and third carbons at about equal rates. However, this oxygen shift does not precede the losses of water and ethylene. Losses of water and ethylene were unimportant for ions with the oxygen initially on the second carbon. Ionized n-butanal and cyclobutanol, but not other [C4H8O]+˙ ions, undergo reversible hydrogen exchange between the oxygen and the terminal carbon. Rearrangement of ionized n-butanal to the [cyclobutanol]+˙ ion is postulated.  相似文献   

4.
It is shown from a detailed examination of first field free region metastable peak shapes that the molecular ion of the methyl ester of acrylic acid rearranges into 2- and 3-butenoic acid ions prior to metastable fragmentations involving the losses of H2O, CH3˙ and CO. The key intermediate ion in this ester-acid isomerization is shown to be the enol form of ionized γ-butyrolactone. The C-5 homologues methylmethacrylate and ethylacrylate display a similar mechanism for H2O loss, but the loss of CH3˙ shows additional mechanistic complexities. It was shown from the metastable peak shapes of 13C and deuterium labelled compounds that the larger part of the methyl loss does not occur from acid type ions, but directly from methyl substituted enol ions of γ-butyrolactone. The mechanistic proposals also account for the presence of a pronounced loss of CH3˙ from the isomeric ester methylcrotonate and the absence of H2O loss in both methylcrotonate and the methyl ester of 3-butenoic acid.  相似文献   

5.
Substituents have been found to have a marked influence on the metastable ion decompositions and collisionally activated (CA) fragmentations of the M+˙ ion of a number of 1,2,3-triarylpropen-1-ones. An attempt has been made to confirm the structures of the rearrangement ions, [C14H10]+˙, [C13H11]+˙, [C13H9]+ and [C12H8]+˙ by comparison of their CA spectra with those of the corresponding ions produced from reference compounds. The results imply that [C14H10]+˙ and the M+˙ ions of phenanthrene and diphenylacetylene have a common structure, [C13H9]+ and the fluorenyl cation have a common structure and [C12H8]+˙ and biphenylene molecular ion have a common structure. The available data indicate that the ion at m/z 167 consists of a mixture of structures, likely possibilities being diphenylmethyl, phenyltropylium and dihydrofluorenyl cations.  相似文献   

6.
Charge-stripping spectra have been used to differentiate ionized cyclopentadiene from its acyclic isomers. The minimum amounts of translational energy lost during the charge-stripping processes and the relative charge-stripping efficiencies, which are also structurally important parameters, have been measured for these ionic species. [C5H6]+˙ ions, formed by dissociative ionization of various precursors in the ion source are found, usually, to be a mixture of cyclic and acyclic ions. In contrast, [C5H6]+˙ ions, derived from the dissociation of metastable molecular ions from a series of organic compounds, have the cyclopentadienyl structure. This structure was confirmed by collision-induced dissociation of ions formed in the first field-free region of a triple sector mass spectrometer.  相似文献   

7.
The loss of CH3˙ from the molecular ions of cyclohexene oxide and 5,6-dihydro-4-methyl-2H-pyran has been investigated. On the basis of metastable peak shape analysis, collision-induced dissociation/mass-analysed ion kinetic energy spectra and thermochemical data it is concluded that the same [C5H7O]+ ion is formed in both cases.  相似文献   

8.
Charge stripping (collisional ionization) mass spectra are reported for isomeric [C5H8]+˙ and [C3H6]+˙ ions. The results provide the first method for adequately quantitatively determining the structures and abundances of these species when they are generated as daughter ions. Thus, loss of H2O from the molecular ions of cyclopentanol and pentanal is shown to produce mixtures of ionized penta-1,3- and -1,4-dienes. Pent-1-en-3-ol generates [penta-1,3-diene]+˙. [C3H6]+˙ ions from ionized butane, methylpropane and 2-methylpropan-1-ol are shown to have the [propene]+˙ structure, whereas [cyclopropane]+˙ is produced from ionized tetrahydrofuran, penta-1,3-diene and pent-1-yne.  相似文献   

9.
From deuterium labelling experiments it was concluded that metastable molecular ions of ethyl methyl sulfide lose a methyl radical with the formation of both [CH3S?CH2]+ amd [CH3CH?SH]+˙ The fragmentation reactions of metastable ions generated with these structure are losses of C2H2, H2S and CH4. These reactoins and the preceding isomerizations have also been studied by means of deuterium labelling. From the results it is concluded that the three fragmentation reactions most probably occur from ions with a C? C? S skeleton. Appearance energy measurements for ions generated with the two structures above and all give rise to the same ΔHf value for these three isomeric forms. Ab initio molecular orbitals calculations confirm that these three ions fortuitously have very similar heats of formation. A potential energy diagram rationalizing the isomerizations and the principal fragmentation reaction is presented.  相似文献   

10.
The translational energy, T, released during the loss of the angular 18- and 19-methyl groups both from metastable molecular ions and metastable [M ? H2O]+ and [M ? 2H2O]+ ions, in C(5)-unsaturated mono-and di-hydroxy steroids, as well as in their 19-nor and deuterated analogues bearing the label in the 19-methyl group, has been measured. It was found that, while the T values for the 19-CH3 loss, following the dehydration of the molecular ions, are increased substantially when compared to those for the same loss from the molecular ions, the T values for the 18-CH3 loss are increased much more moderately. Nevertheless, the amounts of translational energy released in the [M ? H2O]+˙ ? 18-CH3˙ and [M ? 2 H2O]+˙ ? 18-CH3˙ transitions are still higher than those found for the respective 19-methyl loss, in accordance with the general rule established recently.  相似文献   

11.
In the electron impact mass spectra of azomethines derived from various substituted aromatic aldehydes and diarninodicyanoethene the superposition of two ortho effects concurring with the azomethine group is apparent: one involving the amino group of the diaminodicyanoethene part accounts for the cyclization to [C5H3N4]+ ions and the other involving ortho substituents of the benzylidene part which can interact with the azomethine moiety is responsible for specific fragment ions, suppressing the typical fragmentations of azomethines. The ortho effect was studied for the o-nitro derivative by labelling experiments, analysis of metastable transitions and collisional activation comparing model ions, demonstrating that the specific [M-H2O]+˙ and [C7H5NO2]+˙ ions are the result of cyclization processes.  相似文献   

12.
The photodissociation of [C4H4]+˙ fragment ions at the ion cyclotron resonance time-scale competes with relaxation of the internal energy by infrared emission. As a result the fraction of photodissociating ions increases with light intensity. The experiments indicate that [C4H4]+˙ from benzene and 1,5-hexadiyne consists of a mixture of 60% vinyl acetylene ions, 10% butatriene ions and 30% cyclic ions. This confirms previous conclusions from studies of the ion-molecule reactions of [C4H4]+˙ with benzene.  相似文献   

13.
The unimolecular metastable and collision-induced fragmentation reactions of [C3H7O]+ ions produced by gas-phase protonation of acetone, propanal, propylene oxide, oxetan and allyl alcohol have been studied. The CID studies show that protonation of acetone and allyl alcohol yield different stable ions with distinct structures while protonation of propanal or propylene oxide yield [C3H7O]+ ions of the same structure. Protonated oxetan rearranges less readily to give the same structure(s) as protonated propanal and propylene oxide. The [C3H7O]+ ions fragmenting as metastable ions after formation by CI have a higher internal energy than the same ions fragmenting after formation by EI. Deuteronation of the C3H6O isomers using CD4 reagent gas shows that loss of C2H3D proceeds by a different mechanism than loss of C2H4. The results are discussed in terms of potential energy profile for the [C3H7O]+˙ system proposed earlier.  相似文献   

14.
The metastable molecular ion of 2-hexanone loses a methyl radical mainly (~80%) from positions C(4) and C(6), in equal proportions, as indicated by 13C labelling. The necessary skeletal rearrangement of the butyl chain is interpreted in terms of a 1,2-[enol-olefin] +˙ shift. The results and the mechanisms concerning the minor eliminations of C2H4, C2H5˙, C3H5˙ and C3H6 neutrals are also discussed.  相似文献   

15.
The isomerizations preceding the metastable decompositions in the mass spectrometer of a number of [C6H12O]+˙ ions with the oxygen on the third carbon are characterized utilizing deuterium labeling. Hydrogens are transferred in these ions by three-, five- and six-membered ring rearrangements, with propensities determined by features of the individual reactions. Three-membered ring hydrogen transfers between α and β-carbons are preferred to all five-membered ring hydrogen transfers. However, six-membered ring hydrogen transfers take place to the apparent exclusion of three-membered ring hydrogen transfers to enol carbons when the products are of comparable stability. The low-energy [C6H12O]+˙ isomerizations characterized are predictable from the behavior of their lower homologs. It is concluded that the determinants of these reactions are the same as those of other highly reactive organic intermediates.  相似文献   

16.
The isomeric ions [H2NC(H)O]+˙, [H2NCOH]+˙, [H3CNO]+˙ and [H2CNOH]+˙ were examined in the gas phase by mass spectrometry. Ab initio molecular orbital theory was used to calculate the relative stabilities of [H2NC(H)O]+˙, [H2NCOH]+˙, [H3NCO]+˙ and their neutral counterparts. Theory predicted [H2NC(H)O]+˙ to be the most stable ion. [H2NCOH]+˙ ions were generated via a 1,4-hydrogen transfer in [H2NC(O)OCH3]+˙, [H2NC(O)C(O)OH]+˙ and [H2NC(O)CH2CH3]+˙. Its metastable dissociation takes place via [H3NCO]+˙ with the isomerization as the rate-determining step. [H2CNOH]+˙ undergoes a rate-determining isomerization into [H3CNO]+˙ prior to metastable fragmentation. Neutralization-reionization mass spectrometry was used to identify the neutral counterparts of these [H3,C,N,O]+˙ ions as stable species in the gas phase. The ion [H3NCO]+˙ was not independently generated in these experiments; its neutral counterpart was predicted by theory to be only weakly bound.  相似文献   

17.
The loss of methyl from unstable, metastable and collisionally activated [CH2?CH? C(OH)?CH2]+˙ ions (1+˙) was examined by means of deuterium and 13C labelling, appearance energy measurements and product identification. High-energy, short-lived 1+˙ lose methyl groups incorporating the original enolic methene (C(1)) and the hydroxyl hydrogen atom (H(0)). The eliminations of C(1)H(1)H(1)H(4) and C(4)H(4)H(4)H(0) are less frequent in high-energy ions. Metastable 1+˙ eliminate mainly C(1)H(1)H(1)H(4), the elimination being accompanied by incomplete randomization of the five carbon-bound hydrogen atoms. The resulting [C3H3O]+ ions have been identified as the most stable CH2?CH? CO+ species. The appearance energy for the loss of methyl from 1 was measured as AE[C3H3O]+ = 10.47 ± 0.05 eV. The critical energy for 1+˙ → [C3H3O]+ + CH3˙ is assessed as Ec ? 173 kJ mol?1. Reaction mechanisms are proposed and discussed.  相似文献   

18.
On the basis of unimolecular and collisionally activated decompositions, as well as their charge stripping behaviour, [C7H8]+˙ and [C7H8]2+ ions from a variety of precursors have been studied. In particular, structural characteristics of molecular ions of toluene, cycloheptatriene, norborna-2,5-diene and quadricyclane have been compared to those of [C7H8]+˙ and [C7H8]2+ rearrangement fragment ions obtained from n-butylbenzene, 2-phenylethanol and n-pentylbenzene. Severe interferences from [C7H7]2+˙ ion fragmentations have been observed and rationalized.  相似文献   

19.
The neutralization-reionization mass spectra of alkane radical ions indicate significant differences between the structures and geometries of alkane molecules and their molecular ions, confirming recent ab initio predictions. Ionic isomers that are indistinguishable by collisionally-activated dissociation because of easy interconversion can be characterized by neutralization-reionization if the corresponding neutrals show different reactivities, as is demonstrated for the [C2H5]+/C2H5˙ system and for [C2H4O2]+˙ isomers. For identification of mixtures of more than one neutral species, the relative efficiency for reionizing each neutral must be determined; e.g. the O2 reionization efficiency of ˙CH2OH radicals is ~4 times greater than that of CH3O˙. This information and reference reionization spectra of CH3O˙ and ˙CH2OH show that metastable or collisionally activated methyl acetate cations lose CH3O˙, not ˙CH2OH as previously reported; the newly-formed CH3O˙ undergoes partial (~20%) isomerization to ˙CH2OH in the ~10?6s before reionization. Similar results are obtained for [B(OCH3)3]+˙.  相似文献   

20.
The mass spectra of a series of β-ketosilanes, p-Y? C6H4Me2SiCH2C(O)Me and their isomeric silyl enol ethers, p-Y? C6H4Me2SiOC(CH3)?CH2, where Y = H, Me, MeO, Cl, F and CF3, have been recorded. The fragmentation patterns for the β-ketosilanes are very similar to those of their silyl enol ether counterparts. The seven major primary fragment ions are [M? Me·]+, [M? C6H4Y·]+, [M? Me2SiO]+˙, [M? C3H4]+˙, [M? HC?CCF3]+˙, [Me2SiOH]+˙ and [C3H6O]+˙ Apparently, upon electron bombardment the β-ketosilanes must undergo rearrangement to an ion structure very similar to that of the ionized silyl enol ethers followed by unimolecular ion decompositions. Substitutions on the benzene ring show a significant effect on the formation of the ions [M? Me2SiO]+˙ and [Me2SiOH]+˙, electron donating groups favoring the former and electron withdrawing groups favoring the latter. The mass spectral fragmentation pathways were identified by observing metastable peaks, metastable ion mass spectra and ion kinetic energy spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号