首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 13C NMR spectra of several monocyclic γ-sultones(1,2-oxathiolane 2,2-dioxides) and δ-sultones(1,2-oxathiane 2,2-dioxides) have been determined and are presented herein. The chemical shifts of the ring carbons of these compounds are compared in terms of conformational, electronic and anisotropic differences. Electric field effects may be responsible for the chemical shifts of the C-α carbon, but do not appear to be important for C-α. Anisotropic deshielding also appears to be important for the chemical shifts of C-α, but the effects on C-α appear to be small. Dipole changes at C-α and C-α, induced by back donation of electron density from the ring oxygen to sulfur, may explain the chemical shifts at C-α. Substituent effects are readily explained in terms of well-known effects. In general, the carbons closest to the sulfonate group are found to be the most affected, and the carbons of the δ-sultones proximate to the sulfonate group are found to be more deshielded than those of the γ-sultones.  相似文献   

2.
The contribution from the existence of a 1,3-diaxial H-α ?H-γ arrangement to the γ-anti effects of substituents X, which was previously believed to be generally shielding, is shown to be extremely dependent on the electronegativity of substituent X. In the presence of axial γ-substituents Y, linear electric field effects appear to play a significant role if the C-γ—Y bond is highly polarizable.  相似文献   

3.
4.
The carbon chemical shifts of several series of α-haloketones have been measured. Whereas the carbon carrying the halogens shows a regular downfield shift with increasing electronegativity of the substituents, the adjacent carbonyl carbon is shifted upfield by chlorine, bromine and iodine, and is little affected by fluorine substitution. The conformational implications of these results are discussed.  相似文献   

5.
Carbon-13 spectra of 59 α,β-unsaturated carboxylic acids have been measured. Large differential shieldings of ethylenic carbons in the cis and trans isomers of acrylic acid derivatives were found (altogether 15 isomeric Z- and E-pairs of acids were investigated). The origin of differential shieldings is complex and both molecular ground states as well as changes in excited states appear to be involved. All measured 13C chemical shifts can be described by additive parameters that provide a straightforward new technique by which structural assignments can be made for a wide variety of isomeric mono-, di- and tri- substituted α,β-unsaturated acids.  相似文献   

6.
The 13C NMR spectra have been determined of: (i) aliphatic compounds having at one end a functionalized sulphur atom (? SH, ? S?, ? SMe, ? S(O)Me, ? SO2Me and ? S+Me2) and (ii) saturated sulphur heterocycles variously substituted at the S-atom . The results are discussed in terms of the familiar deshielding effects for α- and β-carbons and shielding effects for γ-carbons, exerted by the sulphur atom itself and/or by the atoms or groups of which the sulphur function is made up. The γ-effect of the S-atom appears to be nearly independent of the nature of the S-function and of comparable magnitude to that of an aliphatic carbon (?2·5 + ?3·0 ppm). Surprisingly, however, a S? CH3 group shields the carbon in γ position with respect to CH3 by an amount (?5·4 ppm) which is more than twice that (?2·5 ppm) exerted by the aliphatic γ-carbon on the S-CH3 carbon itself. As to the cyclic compounds, the shieldings of the α- and β-carbons can be rationalized in terms of the conformational orientation of the substituent at sulphur, and the equilibrium distribution of the conformers. The results confirm the great value of 13C NMR for configurational and conformational assignment of S-heterocycles.  相似文献   

7.
1,2,3,4,6‐Penta‐O‐acetyl‐α‐d ‐glucopyranose and the corresponding [1‐2H], [2‐2H], [3‐2H], [4‐2H], [5‐2H], and [6,6‐2H2]‐labeled compounds were prepared for measuring deuterium/hydrogen‐induced effects on 13C chemical shift nΔ (DHIECS) values. A conformational analysis of the nondeuterated compound was achieved using density functional theory (DFT) molecular models that allowed calculation of several structural properties as well as Boltzmann‐averaged 13C NMR chemical shifts by using the gauge‐including atomic orbital method. It was found that the DFT‐calculated C–H bond lengths correlate with 1Δ DHIECS. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
An equation has been developed which relates ortho or C-β 13C substituent chemical shifts (SCS) to the ortho proton–proton coupling constant in the unsubstituted member of a conjugated series. This method is an extension of previous equations which have been used to predict ortho 1H SCS values, and has its origin in a relationship between bond order and SCS values. The equation was derived from ortho 13C data in 2-naphthalenes and monosubstituted benzenes and its application to other unsaturated series is discussed.  相似文献   

9.
13C chemical shifts empirical calculations, through a very simple additivity relationship, for the alpha-methylene carbon of some alpha-mono-substituted acetonitriles, Y-CH(2)-CN (Y=H, F, Cl, Br, I, OMe, OEt, SMe, SEt, NMe(2), NEt(2), Me and Et), lead to similar, or even better, results in comparison to the reported values obtained through Quantum Mechanics methods. The observed deviations, for some substituents, are very similar for both approaches. This divergence between experimental and calculated, either empirically or theoretically, values are smaller than for the corresponding acetones, amides, acetic acids and methyl esters, which had been named non-additivity effects (or intramolecular interaction chemical shifts, ICS) and attributed to some orbital interactions. Here, these orbital interactions do not seem to be the main reason for the non-additivity effects in the empirical calculations, which must be due solely to the magnetic anisotropy of the heavy atom present in the substituent. These deviations, which were also observed in the theoretical calculations, were attributed in that case to the non-inclusion of relativistic effects and spin-orbit coupling in the Hamiltonian. Some divergence is also observed for the cyano carbon chemical shifts, probably due to the same reasons.  相似文献   

10.
13C chemical shifts are reported for the ring carbons of several substituted Δ1-pyrrolines. Average values for methine and methylene ring carbons facilitate structure elucidation of substituted δ1-pyrrolines by 13C NMR spectroscopy.  相似文献   

11.
13C chemical shifts obtained under uniform conditions for selected compounds containing secondary aliphatic fragments were employed in a linear regression analysis. Two-parameter relationships describing the substituent effects in the saturated framework were calculated, and the usefulness of such calculations is discussed. Finally, coefficients for linear relationships in primary and secondary alkyl derivatives are compared.  相似文献   

12.
13C shielding data for 100 derivatives of pyrazole are reported. These include methyl, ethyl, n-propyl, tert-butyl, phenyl, hydroxymethyl, carboxyl, ethoxycarbonyl, cyano, amino, hydrazino, nitro, azido, chloro, bromo and iodo groups as substituents on the ring carbon atoms.  相似文献   

13.
1H and 13C NMR chemical shift calculations using the density functional theory–gauge including/invariant atomic orbitals (DFT–GIAO) approximation at the B3LYP/6‐311G++(d,p) level of theory have been used to assign both natural diastereoisomers of 6β‐hydroxyhyoscyamine. The theoretical chemical shifts of the 1H and 13C atoms in both isomers were calculated using a previously determined conformational distribution, and the theoretical and experimental values were cross‐compared. For protons, the obtained average absolute differences and root mean square (rms) errors for each comparison showed that the experimental chemical shifts of dextrorotatory and levorotatory 6β‐hydroxyhyoscyamines correlated well with the theoretical values calculated for the (3R,6R,2′S) and (3S,6S,2′S) configurations, respectively, whereas for 13C atoms the calculations were unable to differentiate between isomers. The nature of the relatively large chemical shift differences observed in nuclei that share similar chemical environments between isomers was asserted from the same calculations. It is shown that the anisotropic effect of the phenyl group in the tropic ester moiety, positioned under the tropane ring, has a larger shielding effect over one ring side than over the other one. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The thermodynamic products (ε‐lactams) of the degradation of ten different spirocyclic oxaziridines were analyzed by 1H and 13C NMR spectroscopy. The preferred conformations were determined by examining the homonuclear spin–spin coupling constant and the chemical shift effects of the N‐substituent and the alkyl group of the aliphatic ring on 1H and 13C NMR spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
All carbon resonances in the title compounds have been unequivocably assigned. Steric effects in the peri substituted compounds have been compared with analogous effects in naphthalene and benzo[b]furan. The observed effects are not explained by current theory. Unusual deshielding steric shifts are observed at some carbons. Methyl substituent effects are not additive at any position in the sterically crowded 2,3-disubstituted compounds.  相似文献   

16.
We have analyzed deuterium isotope effects on (13)C chemical shifts in a series of o-hydroxy Schiff bases by applying factor analysis. Two orthogonal factors were obtained that explain about 80 and 10 % of the variance of the data. The numerical values of these factors can be related to 1H NMR chemical shifts of the proton involved in the intramolecular bonds delta(XH) (X = O or N). Such a relation allows one to identify clusters of compounds with different tautomeric forms of hydrogen bonding. Application of a similar approach to solution 13C NMR chemical shifts produces three important factors, which have a different structure to factors describing isotope effects. This illustrates well the different nature of chemical shifts and isotope effects. The three factors explain about 54, 15, and 13 % of variance. They can be rationalized and are strongly related to the electronic properties and location of substituents.  相似文献   

17.
18.
The 13C NMR spectra of β-carboline alkaloids were determined, and unambiguous assignments of the spectra were carried out from the long-range coupling constants.  相似文献   

19.
The 13C NMR chemical shifts for 1,3-dithiolane and 13 methyl substituted derivatives are reported. Substituent effects are derived and compared with those for cyclopentanes and 1,3-dioxolanes. The magnitude and variety of the substituent effects are best explained with the aid of a half-chair conformation where the S-1? C-2? S-3 plane passes between C-4 and C-5.  相似文献   

20.
The prediction of the 13C NMR signals for derivatives of naphthalene has been investigated using mathematical modeling techniques. Two empirical multiple regression models which utilize the field, resonance, and Charton's steric parameters together with molar refractivity were developed, one for α- and the other for β-substituted naphthalene derivatives. In the α case the model had a correlation coefficient of observed versus predicted line positions of r = 0.973 with a standard deviation of 2.2 ppm while in the β case r = 0.979 with the standard deviation being 2.3 ppm. The database consisted of 3152 signals from 394 naphthalene derivatives. We also report the use of the Taft steric parameter in place of the Charton steric parameter in the above- mentioned prediction equations. Received: 19 June 1998 / Accepted: 20 October 1998 / Published online: 16 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号