首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Complex dielectric permittivities of pure and KOH-doped (x = 1.8 x 10–4) tetrahydrofuran clathrate hydrates were measured in the temperature range 20–260 K and in the frequency range 20 Hz-1 MHz. The relaxation time of the water reorientational motion was found to decrease drastically as a result of the doping; e.g., the relaxation time of the doped sample was 10–9 times shorter than that of the pure sample at 70 K. The activation enthalpy of the motion was reduced to 7.4 kJ mol–1. On cooling the crystal, the value of decreased suddenly at the 62 K phase transition to the 2 value of the pure sample and at the same time disappeared. No dispersion effect due to the guest reorientation was observed below the transition. These data indicate that both the host and guest molecules become ordered or, at least, change their mobility drastically. In the pure sample, a relaxation phenomenon of 02 was found around the glass transition region. The relaxation times agreed well with those derived from the enthalpy of relaxation in a calorimetric study.Dedicated to Dr D. W. Davidson in honor of his great contributions to the sciences of inclusion phenomena.  相似文献   

2.
Dielectric relaxation in aqueous solutions of tetrahydrofuran is reported and the results interpreted in terms of the pseudo-clathrate hydrate model of the structure of the liquid state. The lifetime of any given pseudo-clathrate configuration is 10–11 sec.Issued as NRCC Publication No. 17436  相似文献   

3.
The heat capacity of structure I ethylene oxide clathrate hydrate EO-6.86 H2O was measured in the temperature range 6–300 K with an adiabatic calorimeter. The temperature and enthalpy of congruent melting were determined to be (284.11 ± 0.02) K and 48.26 kJ mol–1, respectively. A glass transition related to the proton configurational mode in the hydrogen-bonded host was observed around 90 K. This glass transition was similar to the one observed previously for the structure II tetrahydrofuran hydrate but showed a wider distribution of relaxation times. The anomalous heat capacity and activation enthalpy associated with the glass transition were almost the same as those for THF-hydrate.Dedicated to Dr D. W. Davidson in honor of his great contributions to the sciences of inclusion phenomena.Author for correspondence.  相似文献   

4.
5.
6.
Tetrahydrofuran (THF) is one of the most widely used analogues for gas hydrates as well as a commonly used additive for reducing the formation pressure of a given hydrate process. Hydrates are also currently being investigated as storage materials for hydrogen as well as materials for hydrogen separations. Here we present a thermodynamic model, based on the CSMGem framework, that accurately captures the phase behavior of various hydrates containing THF and hydrogen. The model uses previously regressed parameters for components other than THF and H2, and can reproduce hydrate formation conditions for a number of hydrates containing THF and/or hydrogen (simple THF, THF + CH4, THF + N2, THF + CO2, THF + H2, CH4 + H2, C2H6 + H2 and C3H8 + H2). The incorporation of THF and H2 within this model framework will serve as a valuable tool for hydrate scenarios involving either of these components.  相似文献   

7.
A double clathrate hydrate with the composition THF·0.5(n-Pr)4NF·16H2O and cubic structure II (CS-II,a=17.67 Å) has been obtained. Its experimental density is 1.053±0.001 g/cm3; its melting point is 8.1°C, i.e. 3.1°C higher than that of the THF·17H2O hydrate. The double hydrates of acetone, 1,4-dioxan, trimethyleneoxide and 1,3-dioxolane with (n-Pr)4NF have melting points of –14.8, –5.5, –2.6 and –9.6°C, respectively. With pressure increase up to 6 kbar the melting points of the double hydrates increase monotonously in contrast to common CS-II hydrates. The friability of the structure of the hydrates (the packing coefficient) and their sensitivity to pressure (dT/dP) are compared.The results of this work have been reported at the International Seminar on Inclusion Compounds, Jaszowiec (Poland), 24–26th September 1987.  相似文献   

8.
Gas hydrate is a new technology for energy gas (methane/hydrogen) storage due to its large capacity of gas storage and safe. But industrial application of hydrate storage process was hindered by some problems. For methane, the main problems are low formation rate and storage capacity, which can be solved by strengthening mass and heat transfer, such as adding additives, stirring, bubbling, etc. One kind of additives can change the equilibrium curve to reduce the formation pressure of methane hydrate, and the other kind of additives is surfactant, which can form micelle with water and increase the interface of water-gas. Dry water has the similar effects on the methane hydrate as surfactant. Additionally, stirring, bubbling, and spraying can increase formation rate and storage capacity due to mass transfer strengthened. Inserting internal or external heat exchange also can improve formation rate because of good heat transfer. For hydrogen, the main difficulties are very high pressure for hydrate formed. Tetrahydrofuran (THF), tetrabutylammonium bromide (TBAB) and tetrabutylammonium fluoride (TBAF) have been proved to be able to decrease the hydrogen hydrate formation pressure significantly.  相似文献   

9.
X-ray diffraction study of quenched sample of acetone clathrate hydrate synthesized at 0.8 GPa was carried out. It was shown that the host frameworks of the hydrate comprise uniform cavities which are similar to that of recently characterized structure of high-pressure tetrahydrofurane hydrate. The unique peculiarity of investigated hydrate is decrease in the crystallographic symmetry of the hydrate arising from ordering in guest subsystem.  相似文献   

10.
The phase equilibria in the Xe–H2O system have been studied by the DTA technique under hydrostatic pressures up to 15 000 bar in a temperature range from -25 °C to 100 °C. We have shown that the cubic structure I xenon hydrate forming at ambient pressure does not undergo any phase transitions under the conditions studied. The temperature of its decomposition into water solution and gas (fluid) increases from 27 °C at 25 bar to 78.2 °C at 6150 bar. At higher pressures the hydrate decomposes into water solution and solid xenon. In the temperature range from 6800 to 9500 bar the decomposition temperature (79.0–79.5 °C) is practically independent of pressure, while further pressure increase results in a slow decrease to 67 °C at 15 000 bar.  相似文献   

11.
Heat capacities of [C6H4(OH)2]3·(H2S) x were measured between 1 and 15 K. Heat capacity peaks were found at (7.56±0.09) K, (7.61±0.05) K, and (7.65±0.07) K for the compounds withx=0.92, 0.95, and 0.96. A weak anomaly was observed around 6.75 K for the compound withx=0.85. The temperatures of these anomalies are unusually low among the phase transitions of molecular crystals. The decrease of the transition temperature from that of crystalline H2S (=103.52 K) is a clear indication of the effect of enclathration on the molecular interaction. A comparison of the rotational heat capacity of the trapped hydrogen sulfide molecules with that of crystalline hydrogen sulfide shows that the trapped hydrogen sulfide molecules have a large rotational freedom at low temperatures (13 K). This agrees with the results from far infrared spectroscopic data. The dielectric constant of the clathrate compound obeyed the Curie-Weiss law above 30 K and no significant dielectric loss was found over the whole temperature range. These results showed that the trapped hydrogen sulfide molecules execute free rotation or are orientationally disordered above 20 K.Dedicated to Professor H. M. Powell.  相似文献   

12.
Crystals of 4(C2H5)4N+F · 11H2O are orthorhombic, space groupPna21, witha=16.130(3),b=16.949(7),c=17.493(7) Å, andZ=4. The structure was shown to be a clathrate hydrate containing infinite chains of edge-sharing (H2O)4F tetrahedra extending parallel to thea axis. The chains are laterally linked by bridging water molecules to form a three-dimensional hydrogen-bonded anion/water framework. The ordered (C2H5)4N+ cations occupy the voids in two open channel systems running in theb andc directions. FinalR F =0.091 for 2278 observed MoK data measured at 22°C. Supplementary Data: relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82010 (20 pages).Dedicated to Professor H. M. Powell.  相似文献   

13.
P,T,X phase diagrams of the CH2Cl2-H2O, the CHCl3-H2O and the CCl4-H2) systems have been studied by DTA in the pressure range 10–3 to 5.0 kbar. Under pressure the cubic structure II (CS-II) hydrates forming in all the systems are replaced by hydrates with the composition M·7.3 H2O whose stoichiometry and positive dT/dP values of melting lead us to believe that they are CS-I hydrates.In the CH2Cl2 and CHCl3 systems the nonvariant point coordinates of the hydrate transformationQ 2 h (l1h17h7l2, where l1 and l2 are liquid phases abundant in water and hydrate former, respectively, h17 and h7 are hydrates with hydrate numbers 17 and 7, respectively) areP = 0.6 kbar, T = –1.5°C andP =2.65 kbar,T = –10.5°C, respectively. In the CCl4 system the 4-phaseQ 3 h point (l1h17h7s, where s is crystalline CCl4) has coordinatesP = 0.75 kbar and T = 0.4°C.The main obstacle of the present study, the very slow achievement of equilibrium, has been eliminated by adding small amounts (0.25% by mass) of surfactants followed by ultrasonic mixing. We have shown that this accelerates the achievement of equilibrium without changing its position.  相似文献   

14.
Cd(CN)2·(CH3O)2CO (1) contains a mineralomimetic framework of Cd(CN)2 analogous to the low temperature form of cristobalite. The host framework is isostructural to those of previously reported Cd(CN)2·G compounds (G = CHCl2CH2Cl2, (CH3)2CHBr3). The dimethyl carbonate molecules in the adamantane-like cage display orientation disorder associated with the location of the carbonyl oxygen atom.Presented at the Sixth International Seminar on Inclusion Compounds, Istanbul, Turkey, 27–31 August, 1995.  相似文献   

15.
The isothermal phase equilibria of the carbon dioxide + cyclopropane mixed-gas hydrate system were investigated by means of static temperature measurement and Raman spectroscopic analysis. Raman spectra indicated that the crystal structure of the carbon dioxide + cyclopropane mixed-gas hydrate changes from structure-I to structure-II and back to structure-I with an increase of the equilibrium carbon dioxide composition at 279.15 K, while each simple gas hydrate belongs to structure-I at the temperature. Whereas, unlike 279.15 K, no structural phase transition occurs along the isothermal stability boundary at 284.15 K.  相似文献   

16.
Heat capacities of the thiourea clathrate compound of 1,1,2,2-tetrachloroethane, {(NH2)2CS}3(CHCl2)2, were measured at temperatures between 13 and 330 K. Two phase transitions were found. The enthalpy and entropy changes of the transition are 5940 J·mol–1 and 28.1 JK–1· mol–1 for the one occurring at 224 K and 2756 J·mol–1 and 11.3 JK–1·mol–1 for the other at 248 K. It is concluded from the transition entropy values that the guest molecules are orientionally disordered nearly to the same extent as in the neat liquid.Contribution No. 56 from the Microcalorimetry Research Center  相似文献   

17.
Phase equilibrium measurements of single and mixed organic clathrate hydrates with hydrogen were determined within a pressure range of 2.0-14.0 MPa. The organic compounds studied were furan, 2,5-dihydrofuran, tetrahydropyran, 1,3-dioxolane and cyclopentane. These organic compounds are known to form structure II clathrate hydrates with water. It was found that the addition of hydrogen to form a mixed clathrate hydrate increases the stability compared to the single organic clathrate hydrates. Moreover, the mixed clathrate hydrate also has a much higher stability compared to a pure hydrogen structure II clathrate hydrate. Therefore, the organic compounds act as promoter materials. The stabilities of the single and mixed organic clathrate hydrates with hydrogen showed the following trend in increasing order: 1,3-dioxolane < 2,5-dihydrofuran < tetrahydropyran < furan < cyclopentane, indicating that both size and geometry of the organic compound determine the stability of the clathrate hydrates.  相似文献   

18.
We discover new structure II (sII) hydrate forming agents of two C4H8O molecules (2-methyl-2-propen-1-ol and 2-butanone) and report the abnormal structural transition of binary C4H8O+CH4 hydrates between structure I (sI) and sII with varying temperature and pressure conditions. In both (2-methyl-2-propen-1-ol+CH4) and (2-butanone+CH4) systems, the phase boundary of the two different hydrate phases (sI and sII) exists at the slope change of the phase-equilibrium curve in the semi-logarithmic plots. We confirm the crystal structures of two hydrates synthesized at low (278 K and 6 MPa) and high (286 K and 15 MPa) temperature and pressure conditions by using high-resolution powder diffraction and Raman spectroscopy. 2-Methyl-2-propen-1-ol and 2-butanone can occupy the large cages of sII hydrate at low temperature and pressure conditions; however, they are excluded from the hydrate phase at high temperature and pressure conditions, resulting in the formation of pure sI CH4 hydrate.  相似文献   

19.
Heat capacities of structure I and II trimethylene oxide (TMO) clathrate hydrates doped with small amount of potassium hydroxide (x=1.8×10–4 to water) were measured by an adiabatic calorimeter in the temperature range 11–300 K. In the str. I hydrate (TMO·7.67H2O), a glass transition and a higher order phase transition were observed at 60 K and 107.9 K, respectively. The glass transition was considered to be due to the freezing of the reorientation of the host water molecules, which occurred around 85 K in the pure sample and was lowered owing to the acceleration effect of KOH. The relaxation time of the water reorientation and its distribution were estimated and compared with those of other clathrate hydrates. The phase transition was due to the orientational ordering of the guest TMO molecules accommodated in the cages formed by water molecules. The transition was of the higher order and the transition entropy was 1.88 J·K–1(TMO-mol)–1, which indicated that at least 75% of orientational disorder was remaining in the low temperature phase. In the str. II hydrates (TMO·17H2O), only one first-order phase transition appeared at 34.5 K. This transition was considered to be related to the orientational ordering of the water molecules as in the case of the KOH-doped acetone and tetrahydrofuran (THF) hydrates. The transition entropy was 2.36 JK–1(H2O-mol)–1, which is similar to those observed in the acetone and THF hydrates. The relations of the transition temperature and entropy to the guest properties (size and dipole moment) were discussed.Contribution No 57 from the Microcalorimetry Research CenterThe authors would like to express their sincere thanks to the Nissan Science Foundation for their financial support.  相似文献   

20.
A novel tetramethylammonium aluminosilicate hydrate with the approximate composition [NMe4]6[AlxSi8?xO18?x(OH)2+x] · 44H2O (x = 3–4) has been identified by powder X-ray diffraction as a component in a polyphasic solid mixture which crystallized at room temperature from an aqueous NMe4OH? Al2O3? SiO2 solution. Large crystals of the novel hydrate phase could be mechanically selected from that mixture. The crystal structure has been determined from 1 196 unique MoKα diffraction data measured at 180 K: Tetragonal crystal system, cell constants a = 16.181(4) and c = 17.450(4) Å, space group P4/mnc with Z = 2 formula units per unit cell, R = 0.072. The host-guest compound is of polyhedral clathrate type with a mixed three-dimensional, (mainly) four-connected network composed of oligomeric aluminosilicate anions [AlxSi8?xO18?x(OH)2+x]6? and H2O molecules linked via hydrogen bonds O? H …? O. The aluminosilicate anions possess a cube-shaped (double four-ring) structure. Orientationally disordered cationic guest species NMe4+ are enclosed in the large [4668] and [4151067] polyhedral voids of the host framework; the small [46] cages (i.e. the double four-ring anions) and [4356] cages are empty. The hydrate is a further member in a recently discovered series of clathrates with mixed tetrahedral networks, which provides a structure-chemical link between zeolite- and clathrate hydrate-type host-guest compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号