首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of bimetallic ruthenium complexes [{Ru(dppe)Cp*}(2)(μ-C≡CArC≡C)] featuring diethynylaromatic bridging ligands (Ar = 1,4-phenylene, 1,4-naphthylene, 9,10-anthrylene) have been prepared and some representative molecular structures determined. A combination of UV-vis-NIR and IR spectroelectrochemical methods and density functional theory (DFT) have been used to demonstrate that one-electron oxidation of compounds [{Ru(dppe)Cp*}(2)(μ-C≡CArC≡C)](HC≡CArC≡CH = 1,4-diethynylbenzene; 1,4-diethynyl-2,5-dimethoxybenzene; 1,4-diethynylnaphthalene; 9,10-diethynylanthracene) yields solutions containing radical cations that exhibit characteristics of both oxidation of the diethynylaromatic portion of the bridge, and a mixed-valence state. The simultaneous population of bridge-oxidized and mixed-valence states is likely related to a number of factors, including orientation of the plane of the aromatic portion of the bridging ligand with respect to the metal d-orbitals of appropriate π-symmetry.  相似文献   

2.
The new [(η(2)-dppe)(η(5)-C(5)Me(5))Fe(C≡C-1,4-C(6)H(4)C≡C)Ru(η(2) -dppe)(2) C≡C(C(6)H(5))] complex (3-H) and its hexanuclear relative [{(η(2)-dppe)(η(5)-C(5) Me(5))Fe(C≡C-1,4-C(6)H(4)-C≡C)Ru(η(2)-dppe)(2)(C≡C-1,4-C(6)H(4)C≡C)(3)(1,3,5-C(6)H(3))] (4) have been synthesized and characterized. The linear and cubic nonlinear optical properties of these compounds in their various redox states have been studied along with those of the analogous complexes [(η(2)-dppe)(η(5)-C(5)Me(5))Fe(C≡C-1,4-C(6)H(4)C≡C)Ru(η(2)-dppe)(2)R][PF(6)](n) (n=0-2; R=Cl, 2-Cl; R=C≡C(4-C(6)H(4)NO(2)),3-NO(2)). We show that molecules exhibiting large third-order nonlinearities can be obtained by assembling such dinuclear Fe/Ru units around a central 1,3,5-substituted C(6)H(3) core. These data are discussed with a particular emphasis on the large changes in their nonlinear (third-order) optical properties brought about by oxidation. Experimental and computational (DFT) evidence for the electronic structures of these compounds in their various redox states is presented using 3-H(n+) as a prototypical model. Single crystals of this complex in its mono-oxidized state (3-H[PF(6)]) provide the first structural data for such carbon-rich Fe(III) /Ru(II) heteronuclear mixed-valent (MV) systems. Although experimental evidence for the structure of the dioxidized states was more difficult to obtain, the theoretical study reveals that 3-H(2+) can be considered to have a biradical structure with two independent spins. The low-lying absorptions that appear in the near-infrared (NIR) range for all these compounds following oxidation correspond to intervalence charge-transfer (IVCT) bands for the mono-oxidized states and to ligand-to-metal charge-transfer (LMCT) transitions for the dioxidized states. These play a crucial role in the strong optical modulation achieved. The possibility of accessing additional states with distinct linear or nonlinear optical properties is also briefly discussed.  相似文献   

3.
Reactions of [Ru{C=C(H)-1,4-C6H4C≡CH}(PPh3)2Cp]BF4 ([ 1 a ]BF4) with hydrohalic acids, HX, results in the formation of [Ru{C≡C-1,4-C6H4-C(X)=CH2}(PPh3)2Cp] [X=Cl ( 2 a-Cl ), Br ( 2 a-Br )], arising from facile Markovnikov addition of halide anions to the putative quinoidal cumulene cation [Ru(=C=C=C6H4=C=CH2)(PPh3)2Cp]+. Similarly, [M{C=C(H)-1,4-C6H4-C≡CH}(LL)Cp ]BF4 [M(LL)Cp’=Ru(PPh3)2Cp ([ 1 a ]BF4); Ru(dppe)Cp* ([ 1 b ]BF4); Fe(dppe)Cp ([ 1 c ]BF4); Fe(dppe)Cp* ([ 1 d ]BF4)] react with H+/H2O to give the acyl-functionalised phenylacetylide complexes [M{C≡C-1,4-C6H4-C(=O)CH3}(LL)Cp’] ( 3 a – d ) after workup. The Markovnikov addition of the nucleophile to the remote alkyne in the cations [ 1 a–d ]+ is difficult to rationalise from the vinylidene form of the precursor and is much more satisfactorily explained from initial isomerisation to the quinoidal cumulene complexes [M(=C=C=C6H4=C=CH2)(LL)Cp’]+ prior to attack at the more exposed, remote quaternary carbon. Thus, whilst representative acetylide complexes [Ru(C≡C-1,4-C6H4-C≡CH)(PPh3)2Cp] ( 4 a ) and [Ru(C≡C-1,4-C6H4-C≡CH)(dppe)Cp*] ( 4 b ) reacted with the relatively small electrophiles [CN]+ and [C7H7]+ at the β-carbon to give the expected vinylidene complexes, the bulky trityl ([CPh3]+) electrophile reacted with [M(C≡C-1,4-C6H4-C≡CH)(LL)Cp’] [M(LL)Cp’=Ru(PPh3)2Cp ( 4 a ); Ru(dppe)Cp* ( 4 b ); Fe(dppe)Cp ( 4 c ); Fe(dppe)Cp* ( 4 d )] at the more exposed remote end of the carbon-rich ligand to give the putative quinoidal cumulene complexes [M{C=C=C6H4=C=C(H)CPh3}(LL)Cp’]+, which were isolated as the water adducts [M{C≡C-1,4-C6H4-C(=O)CH2CPh3}(LL)Cp’] ( 6 a–d ). Evincing the scope of the formation of such extended cumulenes from ethynyl-substituted arylvinylene precursors, the rather reactive half-sandwich (5-ethynyl-2-thienyl)vinylidene complexes [M{C=C(H)-2,5-cC4H2S-C≡CH}(LL)Cp’]BF4 ([ 7 a – d ]BF4 add water readily to give [M{C≡C-2,5-cC4H2S-C(=O)CH3}(LL)Cp’] ( 8 a – d )].  相似文献   

4.
Two methodologies of C-C bond formation to achieve organometallic complexes with 7 or 9 conjugated carbon atoms are described. A C7 annelated trans-[Cl(dppe)2Ru=C=C=C-CH=C(CH2)-C[triple bond]C-Ru(dppe)2Cl][X] (X = PF6, OTf) complex is obtained from the diyne trans-[Cl(dppe)2Ru-(C[triple bond]C)2-R] (R = H, SiMe3) in the presence of [FeCp2][PF6] or HOTf, and C7 or C9 complexes trans-[Cl(dppe)2Ru-(C[triple bond]C)n-C(CH3)=C(R1)-C(R2)=C=C=Ru(dppe)2Cl][X] (n = 1, 2; R1 = Me, Ph, R2 = H, Me; X = BF4, OTf) are formed in the presence of a polyyne trans-[Cl(dppe)2Ru-(C[triple bond]C)n-R] (n = 2, 3; R = H, SiMe3) with a ruthenium allenylidene trans-[Cl(dppe)2Ru=C=C=C(CH2R1)R2][X]. These reactions proceed under mild conditions and involve cumulenic intermediates [M+]=(C=)nCHR (n = 3, 5), including a hexapentaenylidene. A combination of chemical, electrochemical, spectroscopic (UV-vis, IR, NIR, EPR), and theoretical (DFT) techniques is used to show the influence of the nature and conformation of the bridge on the properties of the complexes and to give a picture of the electron delocalization in the reduced and oxidized states. These studies demonstrate that the C7 bridging ligand spanning the metal centers by almost 12 angstroms is implicated in both redox processes and serves as a molecular wire to convey the unpaired electron with no tendency for spin localization on one of the halves of the molecules. The reactivity of the C7 complexes toward protonation and deprotonation led to original bis(acetylides), vinylidene-allenylidene, or carbyne-vinylidene species such as trans-[Cl(dppe)2Ru[triple bond]C-CH=C(CH3)-CH=C(CH3)-HC=C=Ru(dppe)2Cl][BF4]3.  相似文献   

5.
The diruthenium compound trans-Ru(2)(DMBA)(4)(C≡C-C(6)H(4)-4-CHO)(2) (1; DMBA is N,N'-dimethylbenzamidinate) was prepared from the reaction between Ru(2)(DMBA)(4)(NO(3))(2) and HC≡C-C(6)H(4)-4-CHO under the weak base conditions. The aldehyde groups of 1 undergo a condensation reaction with NH(2)C(6)H(4)-4-Y (Y = H and NH(2)) to afford new compounds trans-Ru(2)(DMBA)(4)(C≡C-C(6)H(4)-4-CH═N-C(6)H(4)-4'-Y)(2) (Y = H (2) and NH(2) (3)). A related compound, Ru(2)(DMBA)(4)(C≡C-C(6)H(4)-4-N═C(Me)Fc)(2) (4), was also prepared from the reaction between Ru(2)(DMBA)(4)(NO(3))(2) and HC≡C-C(6)H(4)-N═C(Me)Fc. X-ray structural studies of compounds 1 and 2 revealed significant deviation from an idealized D(4h) geometry in the coordination sphere of the Ru(2) core. Voltammetric measurements revealed four one electron redox processes for compounds 1-3: the Ru(2) centered oxidation and reduction, and a pair of reductions of the imine or aldehyde groups. Compound 4 displays an additional oxidation attributed to the Fc groups. DFT calculations were performed on model compounds to gain a more thorough understanding of the interaction of the organic functional groups across the diruthenium bridge.  相似文献   

6.
A general method for the synthesis of cage-carbon-functionalized cyclopentadienyl iron and cyclopentadienyl ruthenium tricarbadecaboranyl complexes has been developed that employs palladium-catalyzed Sonogashira, Heck, and Stille cross-coupling reactions directed at a cage-carbon haloaryl substituent. The key Li(+)[6-(p-XC(6)H(4))-nido-5,6,9-C(3)B(7)H(9)(-)] (X = I (1), Br (2), Cl (3)) haloaryl-tricarbadecaboranyl anionic ligands were synthesized in high yields via the reaction of the arachno-4,6-C(2)B(7)H(12)(-) anion with the corresponding p-halobenzonitriles (p-XC(6)H(4)-CN). The reactions of the salts 1-3 with (η(5)-C(5)H(5))Fe(CO)(2)I and (η(5)-C(5)H(5))Ru(CH(3)CN)(3)PF(6) were then used to produce the haloaryl complexes 1-(η(5)-C(5)H(5))-2-(p-XC(6)H(4))-closo-1,2,3,4-MC(3)B(7)H(9) (M = Fe, X = I (4), Br (5), Cl (6) and M = Ru, X = I (7), Br (8), Cl (9)). The sonication-promoted Sonogashira coupling reactions of 4 with terminal alkynes catalyzed by Pd(dppf)(2)Cl(2)/CuI yielded the alkynyl-linked derivatives 1-(η(5)-C(5)H(5))-2-p-RC(6)H(4)-closo-1,2,3,4-FeC(3)B(7)H(9) (R = (PhC≡C)- (10), (CH(3)CH(2)C(O)OCH(2)C≡C)- (11), ((η(5)-C(5)H(5))Fe(η(5)-C(5)H(4)C≡C))- (12)). Heck reactions of 4 with terminal alkenes catalyzed by Pd(OAc)(2) yielded the alkene-functionalized products 1-(η(5)-C(5)H(5))-2-p-RC(6)H(4)-closo-1,2,3,4-FeC(3)B(7)H(9) (R = (PhCH(2)CH═CH)- (13), (CH(3)(CH(2))(2)CH═CH)- (14)), while the Stille cross-coupling reactions of 4 with organotin compounds catalyzed by Pd(PPh(3))(2)Cl(2) afforded the complexes 1-(η(5)-C(5)H(5))-2-p-RC(6)H(4)-closo-1,2,3,4-FeC(3)B(7)H(9) (R = Ph- (15), (CH(2)═CH)- (16), (CH(2)═CHCH(2))- (17)). These reactions thus provide facile and systematic access to a wide variety of new types of functionalized metallatricarbadecaboranyl complexes with substituents needed for potential metallocene-like biomedical and/or optoelectronic applications.  相似文献   

7.
The complexes [{Cp'(L(2))Ru}C≡CC(6)H(4)C≡CC(6)H(2)(OMe)(2)C≡CC(6)H(4)C≡C{Ru(L(2))Cp'}](L(2) = (PPh(3))(2), Cp' = Cp; L(2) = dppe, Cp' = Cp*) in which the metal centres are bridged by an oligomeric phenylene ethynylene (OPE) ligand have been prepared and the electronic structure of these representative ruthenium-capped OPEs investigated using a combination of electrochemical, UV-vis-NIR and IR spectroelectrochemical methods, and DFT-based calculations. The diruthenium complexes are oxidised to the thermodynamically stable dications [Cp'Ru(L(2))C≡CC(6)H(4)C≡CC(6)H(2)(OMe)(2)C≡CC(6)H(4)C≡CRu(L(2))Cp'](2+), which on the basis of the spectroelectrochemical and computational results can be described in terms of two non-interacting Ru(C≡CAr)(L(2))Cp' moieties. X-ray structures of the oligophenyleneethynylene HC≡CC(6)H(4)C≡CC(6)H(2)(OMe)(2)C≡CC(6)H(4)C≡CH, the bis(gold) complex Ph(3)PAuC≡CC(6)H(4)C≡CC(6)H(2)(OMe)(2)C≡CC(6)H(4)C≡CAuPPh(3) and the precursor 1-ethynyl-4-(trimethylsilylethynyl)benzene are also reported.  相似文献   

8.
Aminocyclopentadienyl ruthenium complexes, which can be used as room-temperature racemization catalysts with lipases in the dynamic kinetic resolution (DKR) of secondary alcohols, were synthesized from cyclopenta-2,4-dienimines, Ru(3)(CO)(12), and CHCl(3): [2,3,4,5-Ph(4)(eta(5)-C(4)CNHR)]Ru(CO)(2)Cl (4: R = i-Pr; 5: R = n-Pr; 6: R = t-Bu), [2,5-Me(2)-3,4-Ph(2)(eta(5)-C(4)CNHR)]Ru(CO)(2)Cl (7: R = i-Pr; 8: R = Ph), and [2,3,4,5-Ph(4)(eta(5)-C(4)CNHAr)]Ru(CO)(2)Cl (9: Ar = p-NO(2)C(6)H(4); 10: Ar = p-ClC(6)H(4); 11: Ar = Ph; 12: Ar = p-OMeC(6)H(4); 13: Ar = p-NMe(2)C(6)H(4)). The tests in the racemization of (S)-4-phenyl-2-butanol showed that 7 is the most active catalyst, although the difference decreased in the DKR. Complex 4 was used in the DKR of various alcohols; at room temperature, not only simple alcohols but also functionalized ones such as allylic alcohols, alkynyl alcohols, diols, hydroxyl esters, and chlorohydrins were successfully transformed to chiral acetates. In mechanistic studies for the catalytic racemization, ruthenium hydride 14 appeared to be a key species. It was the major organometallic species in the racemization of (S)-1-phenylethanol with 4 and potassium tert-butoxide. In a separate experiment, (S)-1-phenylethanol was racemized catalytically by 14 in the presence of acetophenone.  相似文献   

9.
The ethene derivatives [(eta(5)-C(5)R(5))RuX(C(2)H(4))(PPh(3))] with R=H and Me, which have been prepared from the eta(3)-allylic compounds [(eta(5)-C(5)R(5))Ru(eta(3)-2-MeC(3)H(4))(PPh(3))] (1, 2) and acids HX under an ethene atmosphere, are excellent starting materials for the synthesis of a series of new halfsandwich-type ruthenium(II) complexes. The olefinic ligand is replaced not only by CO and pyridine, but also by internal and terminal alkynes to give (for X=Cl) alkyne, vinylidene, and allene compounds of the general composition [(eta(5)-C(5)R(5))RuCl(L)(PPh(3))] with L=C(2)(CO(2)Me)(2), Me(3)SiC(2)CO(2)Et, C=CHCO(2)R, and C(3)H(4). The allenylidene complex [(eta(5)-C(5)H(5))RuCl(=C=C=CPh(2))(PPh(3))] is directly accessible from 1 (R=H) in two steps with the propargylic alcohol HC triple bond CC(OH)Ph(2) as the precursor. The reactions of the ethene derivatives [(eta(5)-C(5)H(5))RuX(C(2)H(4))(PPh(3))] (X=Cl, CF(3)CO(2)) with diazo compounds RR'CN(2) yield the corresponding carbene complexes [(eta(5)-C(5)R(5))RuX(=CRR')(PPh(3))], while with ethyl diazoacetate (for X=Cl) the diethyl maleate compound [(eta(5)-C(5)H(5))RuCl[eta(2)-Z-C(2)H(2)(CO(2)Et)(2)](PPh(3))] is obtained. Halfsandwich-type ruthenium(II) complexes [(eta(5)-C(5)R(5))RuCl(=CHR')(PPh(3))] with secondary carbenes as ligands, as well as cationic species [(eta(5)-C(5)H(5))Ru(=CPh(2))(L)(PPh(3))]X with L=CO and CNtBu and X=AlCl(4) and PF(6), have also been prepared. The neutral compounds [(eta(5)-C(5)H(5))RuCl(=CRR')(PPh(3))] react with phenyllithium, methyllithium, and the vinyl Grignard reagent CH(2)=CHMgBr by displacement of the chloride and subsequent C-C coupling to generate halfsandwich-type ruthenium(II) complexes with eta(3)-benzyl, eta(3)-allyl, and substituted olefins as ligands. Protolytic cleavage of the metal-allylic bond in [(eta(5)-C(5)H(5))Ru(eta(3)-CH(2)CHCR(2))(PPh(3))] with acetic acid affords the corresponding olefins R(2)C=CHCH(3). The by-product of this process is the acetato derivative [(eta(5)-C(5)H(5))Ru(kappa(2)-O(2)CCH(3))(PPh(3))], which can be reconverted to the carbene complexes [(eta(5)-C(5)H(5))RuCl(=CR(2))(PPh(3))] in a one-pot reaction with R(2)CN(2) and Et(3)NHCl.  相似文献   

10.
The tetranuclear complexes [{(PiPr(3))(2)(CO)ClRu(mu-CH=CHpy)Ru Cl(CO)(PPh(3))(2)}(2)(mu-CH=CH-C(6)H(4)- CH=CH-1,4)] (3 a) and [{(PiPr(3))(2)(CO)ClRu(mu-CH=CHpy)RuCl(CO)(PPh(3))(2)}(2)(mu-CH=CH-C(6)H(4)-CH=CH-1,3)] (3b), which contain vinylpyridine ligands that connect peripheral Ru(PiPr(3))(2)(CO)Cl units to a central divinylphenylene-bridged diruthenium core, have been prepared and investigated. These complexes, in various oxidation states up to the tetracation level, have been characterized by standard electrochemical and spectroelectrochemical techniques, including IR, UV/Vis/NIR and ESR spectroscopy. A comparison with the results for the vinylpyridine-bridged dinuclear complex [PiPr(3))(2)(CO)ClRu(mu-CH=CHpy)RuCl(CO)(PPh(3))(2)(CH=CHPh)] (6) and the divinylphenylene-bridged complexes [{(EtOOCpy)(CO)Cl(PPh(3))(2)Ru}(2)(mu-CH=CH-C(6)H(4)-CH=CH-1,4)] (8a) and [{(EtOOCpy)(CO)Cl(PPh(3))(2)Ru}(2)(mu-CH=CH-C(6)H(4)-CH=CH-1,3)] (8b), which represent the outer sections (6) or the inner core (8a,b) of complexes 3a,b, and with the mononuclear complex [(EtOOCpy)(CO)(PPh(3))(2)RuCl(CH=CHPh)] (7) indicate that every accessible oxidation process is primarily centred on one of the vinyl ligands, with smaller contributions from the metal centres. The experimental results and quantum chemical calculations indicate charge- and spin-delocalization across the central divinylphenylenediruthenium part of 3a,b or the styrylruthenium unit of 6, but not beyond. The energy gap between the higher lying styryl- or divinylphenylenediruthenium-based and the lower occupied vinylpyridineruthenium-based orbitals increases in the order 6<3 b<3 a and thus follows the conjugation within the non-heteroatom-substituted aromatic vinyl ligand.  相似文献   

11.
Reduction of imines by [2,5-Ph2-3,4-Tol(2)(eta(5)-C(4)COH)]Ru(CO)2H (1) produces kinetically stable ruthenium amine complexes. Reduction of an imine possessing an intramolecular amine was studied to distinguish between inner sphere and outer sphere mechanisms. 1,4-Bn(15)NH(c-C(6)H(10))=NBn (12) was reduced by 1 in toluene-d8 to give 85% of [2,5-Ph2-3,4-Tol(2)(eta(4)-C(4)CO)](CO)(2)RuNHBn(c-C(6)H(10))(15)NHBn (16-RuN,15N), resulting from coordination of the newly formed amine to the ruthenium center, and 15% of trapping product [2,5-Ph2-3,4-Tol(2)(eta(4)-C(4)CO)](CO)(2)Ru(15)NHBn(c-C(6)H(10))NHBn (16-Ru(15)N,N), resulting from coordination of the intramolecular trapping amine. These results provide support for an outer sphere transfer of hydrogen to the imine to generate a coordinatively unsaturated intermediate, which can be trapped by the intramolecular amine. An opposing mechanism, requiring coordination of the imine nitrogen to ruthenium prior to hydrogen transfer, cannot readily explain the observation of the trapping product 16-Ru(15)N,N.  相似文献   

12.
The cationic complex {[Ru]=C=CHCPh2CH2CH=CH2}BF4 (3a, [Ru] = (eta5-C5H5)(PPh3)2Ru) in solution transforms to {[Ru]=C=CHCH2CPh2CH=CH2}BF4 (4a) via a new metathesis process of the terminal vinyl group with the C=C of the vinylidene group which is confirmed by 13C labeling studies. This transformation is irreversible as revealed by deuteration and decomplexation studies. The cationic complex {[Ru]=C=CHCPh2CH2CMe=CH2}BF4 (3b) undergoes a cyclization process yielding 6b containing a eta2-cyclic allene ligand which is fully characterized by single-crystal X-ray diffraction analysis. Analogous complexes 4a' and 6b' ([Ru] = (eta5-C5H5)(dppe)Ru) containing dppe ligands were similarly obtained from protonation of the corresponding acetylide complexes via formation of vinylidene intermediate. Protonation of the acetylide complex containing a terminal alkynyl group [Ru]-CCCPh2CH2CCH (2c) generates the vinylidene complex {[Ru]=C=CHCPh2CH2CCH}BF4 (3c) which again undergoes an irreversible transformation to give {[Ru]=C=CHCH2CPh2CCH}BF4 (4c) possibly via a pi-coordinated alkynyl complex followed by hydrogen and metal migration. No similar transformation is observed for the analogous dppe complex 3c'. With an extra methylene group, complex {[Ru]=C=CHCPh2CH2CH2CH=CH2}BF4 (3d) and complex {[Ru]=C=CHCPh2CH2Ph}BF4 (3e) are stable. The presence of a gem-diphenylmethylene moiety at the vinylidene ligand with the appropriate terminal vinyl or alkynyl group along with the correct steric environment implements such a novel reactivity in the ruthenium vinylidene complexes.  相似文献   

13.
The reaction of 1-chloro-2-(trimethylsilyl)-1-boracyclohexa-2,5-diene with [(n)Bu(4)N]C≡N provides the 1-borabenzonitrile salt [(n)Bu(4)N][C(5)H(5)BC≡N] which in turn reacts with [Ru(4)(μ-Cl)(4)(η-C(5)Me(5))(4)] to afford the sandwich complex [Ru(η(6)-C(5)H(5)BC≡N)(η-C(5)Me(5))]. The bonding of 1-borabenzonitrile is discussed with recourse to crystallographic data for [(n)Bu(4)N][C(5)H(5)BC≡N] and [Ru(η(6)-C(5)H(5)BC≡N)(η-C(5)Me(5))].  相似文献   

14.
The ruthenium(II) complexes [Ru(R)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh) are formed on reaction of IPr·CS(2) with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] (BTD = 2,1,3-benzothiadiazole) or [Ru(C(C≡CPh)=CHPh)Cl(CO)(PPh(3))(2)] in the presence of ammonium hexafluorophosphate. Similarly, the complexes [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) are formed in the same manner when ICy·CS(2) is employed. The ligand IMes·CS(2) reacts with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] to form the compounds [Ru(R)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh). Two osmium analogues, [Os(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) and [Os(C(C≡CPh)=CHPh)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) were also prepared. When the more bulky diisopropylphenyl derivative IDip·CS(2) is used, an unusual product, [Ru(κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IDip)Cl(CO)(PPh(3))(2)](+), with a migrated vinyl group, is obtained. Over extended reaction times, [Ru(CH=CHC(6)H(4)Me-4)Cl(BTD)(CO)(PPh(3))(2)] also reacts with IMes·CS(2) and NH(4)PF(6) to yield the analogous product [Ru{κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IMes}Cl(CO)(PPh(3))(2)](+)via the intermediate [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+). Structural studies are reported for [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)]PF(6) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)]PF(6).  相似文献   

15.
The first examples of vinylidene complexes of the cycloheptatrienyl tungsten system [W(C=CHR)(dppe)(η-C?H?)](+) (dppe = Ph?PCH?CH?PPh?; R = H, 3; Ph, 4; C?H?-4-Me, 5) have been synthesised by reaction of [WBr(dppe)(η-C?H?)], 1, with terminal alkynes HC≡CR; a one-pot synthesis of 1 from [WBr(CO)?(η-C?H?)] facilitates its use as a precursor. The X-ray structure of 4[PF?] reveals that the vinylidene ligand substituents lie in the pseudo mirror plane of the W(dppe)(η-C?H?) auxiliary (vertical orientation) with the phenyl group located syn to the cycloheptatrienyl ring. Variable temperature 1H NMR investigations on [W(C=CH?)(dppe)(η-C?H?)][PF?], 3, estimate the energy barrier to rotation about the W=C(α) bond as 62.5 ± 2 kJ mol?1; approximately 10 kJ mol?1 greater than for the molybdenum analogue. Deprotonation of 4 and 5 with KOBu(t) yields the alkynyls [W(C≡CR)(dppe)(η-C?H?)] (R = Ph, 6; C?H?-4-Me, 7) which undergo a reversible one-electron oxidation at a glassy carbon electrode in CH?Cl? with E(?) values approximately 0.12 V negative of Mo analogues. The 17-electron radicals [6](+) and [7](+) have been investigated by spectroelectrochemical IR, UV-visible and EPR methods. The electronic structures of representative vinylidene (3) and alkynyl (6) complexes have been investigated at the B3LYP/Def2-SVP level. In both cases, electronic structure is characterised by a frontier orbital with significant metal d(z2)character and this dominates the structural and spectroscopic properties of the system.  相似文献   

16.
The complexes [(eta5-RC5H4)Ru(CH3CN)3]PF6(R = H, CH3) react with DCVP (DCVP = Cy2PCH=CH2) at room temperature to produce the phosphaallyl complexes [(eta5-C5H5)Ru(eta1-DCVP)(eta3-DCVP)]PF6 and [(eta5-MeC5H4)Ru(eta1-DCVP)(eta3-DCVP)]PF6. Both compounds react with a variety of two-electron donor ligands displacing the coordinated vinyl moiety. In contrast, we failed to prepare the phosphaallyl complexes [(eta5-C5Me5)Ru(eta1-DCVP)(eta3-DCVP)]PF6, [(eta5-MeC5H4)Ru(CO)(eta3-DCVP)]PF6 and [(eta5-C5Me5)Ru(CO)(eta3-DPVP)]PF6(DPVP = Ph2PCH=CH2).The compounds [(eta5-MeC5H4)Ru(CO)(CH3CN)(DPVP)]PF6 and [(eta5-C5Me5)Ru(CO)(CH3CN)(DPVP)]PF6 react with DMPP (3,4-dimethyl-1-phenylphosphole) to undergo [4 + 2] Diels-Alder cycloaddition reactions at elevated temperature. Attempts at ruthenium catalyzed hydration of phenylacetylene produced neither acetophenone nor phenylacetaldehyde but rather dimers and trimers of phenylacetylene. The structures of the complexes described herein have been deduced from elemental analyses, infrared spectroscopy, 1H, 13C{1H}, 31P{1H} NMR spectroscopy and in several cases by X-ray crystallography.  相似文献   

17.
Visible-light photolysis of [FeCp(η(6)-C(6)H(5)CH(3))][PF(6)] using a simple 100-W bulb or a compact fluorescent light bulb in the presence of terminal alkynes and dppe yielded the vinylidene complexes [FeCp(═C═CHR)(dppe)][PF(6)] that were deprotonated by t-BuOK to yield the alkynyl complexes [FeCp(-C≡CR)(dppe)]. The reaction has been extended to the synthesis of bis-, tris, tetra-, and hexanuclear iron complexes including three alkynes of the ferrocenyl family.  相似文献   

18.
Photochromic dithienylethene (DTE) derivatives, M-DTE-M (M: M(η(5)-C(5)R(5))L(2); M = Fe, Ru; R = H, Me; L = CO, phosphine), with direct σ-bonded, redox-active organometallic attachments are prepared and their response to photo- and electro-chemical stimuli as well as wire-like and switching performance has been investigated. These properties turn out to be dependent on the metal and the auxiliary ligands. The DTE complexes with the MCp(CO)(2) and RuCp(CO)(PPh(3)) fragments undergo reversible photochemical ring-closing and -opening of the DTE moiety upon UV and visible-light irradiation, respectively, whereas the other FeCp(CO)(PPh(3)) and Fe(η(5)-C(5)R(5))(dppe) derivatives are virtually inert with respect to the photochemical ring closing process. Electrochemical analysis of the DTE complexes reveals that 2e-oxidation of the open isomer O also brings about the ring closure of the DTE moiety to afford the Fischer-carbene-type, dicationic closed derivatives C(2+) with the π-conjugated system different from that in the neutral ones C obtained photochemically. Subsequent reduction of C(2+) furnishes the neutral closed species C. Thus the ring closure is mediated not only by the conventional photochemical process but also by the sequential oxidation-reduction process, i.e. the organometallic DTE complexes are found to be dually photo- and electro-chromic. It is notable that the oxidative procedures are viable for the photochemically inert derivatives. Wire-like and switching performance has been evaluated on the basis of the comproportionation constant K(C) for the 1e-oxidized mixed valence monocationic species obtained by the electrochemical analysis and the switching factor SF (K(C)(C)/K(C)(O)), respectively. The K(C)(C) (7.5 × 10(4)) and SF values (5.4 × 10(3)) for phosphine-substituted derivatives are significantly large, as a result of the distinct π-conjugated systems of the DTE moieties involved in the O- (with cross-conjugation) and C-forms (fully conjugated). Compared to the previously reported acetylide-type complexes bridged by a DTE linker, (dppe)Cp*M-C≡C-DTE-C≡C-MCp*(dppe), both parameters have been significantly improved by factors of ~150. Time-dependent DFT analysis for the photochemical processes has revealed that the ring-closing process occurs not only via the ligand centered singlet excited state but also via the ligand centered triplet state resulting from energy transfer processes between the ligand- and metal-centered excited states and that this proposed mechanism can account for the photochemical reactivity of ruthenium complexes superior to that of the corresponding iron derivatives.  相似文献   

19.
The reactions of the hydrido compounds [RuHCl(CO)(L)2][L = PiPr3 (1), PCy3 (2)] with HC(triple bond)CR (R = H, Ph, tBu) afforded by insertion of the alkyne into the Ru-H bond the corresponding vinyl complexes [RuCl(CHCHR)(CO)(L)2], 3-8, which upon protonation with HBF4 gave the cationic five-coordinated ruthenium carbenes [RuCl(CHCH2R)(CO)(L)2]BF4, 9-14. Subsequent reactions of the carbene complexes with PR3(R = Me, iPr) and CH3CN led either to deprotonation and re-generation of the vinyl compounds or to cleavage of the ruthenium-carbene bond and the formation of the six-coordinated complexes [RuCl(CO)(CH3CN)2(PiPr3)2]BF4, 17, and [RuH(CO)(CH3CN)2(PiPr3)2]X, 18a,b. The acetato derivative [RuH(2-O2CCH3)(CO)(PCy3)2], 19, also reacted with acetylene and phenylacetylene by insertion to yield the related vinyl complexes [Ru(CHCHR)(kappa2-O2CCH3)(CO)(PCy3)2], 20, 21, of which that with R = H was protonated with HBF4 to yield the corresponding cationic ruthenium carbene 22. With [RuHCl(H2)(PCy3)2], 25, as the starting material, the five-coordinated chloro(hydrido)ruthenium(II) compounds [RuHCl(PCy3)(dppf)], 26(dppf = [Fe(eta5-C5H4PPh2)2]), [RuHCl[Sb(CH2Ph)3](PCy3)2], 27, and [RuHCl(CH3CN)(PCy3)2], 30, were prepared. The reactions of 27 with HCCR (R = H, Ph) gave the hydrido(vinylidene) complexes [RuHCl(CCHR)(PCy3)2], 28 and 29, whereas treatment of 30 with HC(triple bond)CPh afforded the vinyl compound [RuCl(CHCHPh)(CH3CN)(PCy3)2], 31. The molecular structures of 11(R = tBu, L = PiPr3) and 26 were determined crystallographically.  相似文献   

20.
The role of the nitrogen atom on the electronic and magnetic couplings of the mono-oxidized and bi-oxidized pyridine-containing complex models [2,6-{Cp(dpe)Fe-C≡C-}(2)(NC(5)H(3))](n+) and [3,5-{Cp(dpe)Fe-C≡C-}(2)(NC(5)H(3))](n+) is theoretically tackled with the aid of density-functional theory (DFT) and multireference configuration interaction (MR-CI) calculations. Results are analyzed and compared to those obtained for the reference complex [1,3-{Cp*(dppe)Fe-C≡C-)}(2)(C(6)H(4))](n+). The mono-oxidized species show an interesting behavior at the borderline between spin localization and delocalization and one through-bond communication path among the two involving the central ring, is favored. Investigation of the spin state of the dicationic complexes indicates ferromagnetic coupling, which can differ in magnitude from one complex to the other. Very importantly, electronic and magnetic properties of these species strongly depend not only upon the location of the nitrogen atom in the ring versus that of the organometallic end-groups but also upon the architectural arrangement of one terminus, with respect to the other and/or vis-à-vis the central ring. To help validate the theoretical results, the related families of compounds [1,3-{Cp*(dppe)Fe-C≡C-)}(2)(C(6)H(4))](n+), [2,6-{Cp*(dppe)Fe-C≡C-}(2)(NC(5)H(3))](n+), [3,5-{Cp*(dppe)Fe-C≡C-}(2)(NC(5)H(3))](n+) (n = 0-2) were experimentally synthesized and characterized. Electrochemical, spectroscopic (infrared (IR), M?ssbauer), electronic (near-infrared (NIR)), and magnetic properties (electron paramagnetic resonance (EPR), superconducting quantum interference device (SQUID)) are discussed and interpreted in the light of the theoretical data. The set of data obtained allows for many strong conclusions to be drawn. A N atom in the long branch increases the ferromagnetic interaction between the two Fe(III) spin carriers (J > 500 cm(-1)), whereas, when placed in the short branch, it dramatically reduces the magnetic exchange in the di-oxidized species (J = 2.14(5) cm(-1)). In the mixed-valence compounds, when the N atom is positioned on the long branch, the intermediate excited state is higher in energy than the different ground-state conformers and the relaxation process provides exclusively the Fe(II)/Fe(III) localized system (H(ab) ≠ 0). Positioning the N atom on the short branch modifies the energy profile and the diabatic mediating state lies just above the reactant and product diabatic states. Consequently, the LMCT transition becomes less energetic than the MMCT transition. Here, the direct coupling does not occur (H(ab) = 0) and only the coupling through the bridge (c) and the reactant (a) and product (b) diabatic states is operating (H(ac) = H(bc) ≠ 0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号