首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tris(3-tert-butyl-5-methylpyrazolyl)hydroborato zinc hydroxide complex [Tp(Bu)t(,Me)]ZnOH is protonated by (C(6)F(5))(3)B(OH(2)) to yield the aqua derivative [[Tp(Bu)t(,Me)]Zn(OH(2))][HOB(C(6)F(5))(3)], which has been structurally characterized by X-ray diffraction, thereby demonstrating that protonation results in a lengthening of the Zn-O bond by ca. 0.1 A. The protonation is reversible, and treatment of [[Tp(Bu)t(,Me)]Zn(OH(2))](+) with Et(3)N regenerates [Tp(Bu)t(,Me)]ZnOH. Consistent with the notion that the catalytic hydration of CO(2) by carbonic anhydrase requires deprotonation of the coordinated water molecule, [[Tp(Bu)t(,Me)]Zn(OH(2))](+) is inert towards CO(2), whereas [Tp(Bu)t(,Me)]ZnOH is in rapid equilibrium with the bicarbonate complex [Tp(Bu)t(,Me)]ZnOC(O)OH under comparable conditions. The cobalt hydroxide complex [Tp(Bu)t(,Me)]CoOH is likewise protonated by (C(6)F(5))(3)B(OH(2)) to yield the aqua derivative [[Tp(Bu)t(,Me)]Co(OH(2))][HOB(C(6)F(5))(3)], which is isostructural with the zinc complex. The aqua complexes [[Tp(Bu)t(,Me)]M(OH(2))][HOB(C(6)F(5))(3)] (M = Zn, Co) exhibit a hydrogen bonding interaction between the metal aqua and boron hydroxide moieties. This hydrogen bonding interaction may be viewed as analogous to that between the aqua ligand and Thr-199 at the active site of carbonic anhydrase. In addition to the structural similarities between the zinc and cobalt complexes, [Tp(Bu)t(,Me)ZnOH] and [Tp(Bu)()t(,Me)]CoOH, and between [[Tp(Bu)t(,Me)]Zn(OH(2))](+) and [[Tp(Bu)t(,Me)]Co(OH(2))](+), DFT (B3LYP) calculations demonstrate that the pK(a) value of [[Tp]Zn(OH(2))](+) is similar to that of [[Tp]Co(OH(2))](+). These similarities are in accord with the observation that Co(II) is a successful substitute for Zn(II) in carbonic anhydrase. The cobalt hydroxide [Tp(Bu)()t(,Me)]CoOH reacts with CO(2) to give the bridging carbonate complex [[Tp(Bu)t(,Me)]Co](2)(mu-eta(1),eta(2)-CO(3)). The coordination mode of the carbonate ligand in this complex, which is bidentate to one cobalt center and unidentate to the other, is in contrast to that in the zinc counterpart [[Tp(Bu)t(,Me)]Zn](2)(mu-eta(1),eta(1)-CO(3)), which bridges in a unidentate manner to both zinc centers. This difference in coordination modes concurs with the suggestion that a possible reason for the lower activity of Co(II)-carbonic anhydrase is associated with enhanced bidentate coordination of bicarbonate inhibiting its displacement.  相似文献   

2.
The tris(pyrazolyl)hydroborato zinc complexes [Tp(But,Me)]ZnX (where X = Br, Cl, and OH) have been examined by low-temperature solid-state (67)Zn NMR spectroscopy. The value of the quadrupole coupling constant, Cq, for the zinc increased monotonically with the electronegativity of the bound substituent X, e.g., Br < Cl < OH. Calculations on the methylimidazole complex [(MeImH)(3)Zn(OH)](+) as a model for the active site of carbonic anhydrase indicate that the computed electric field gradient tensor is in good agreement with the experimental and calculated values for [Tp(But,Me)]ZnOH.  相似文献   

3.
In this communication, we report on the interaction landscape of an active site-specific enzyme-inhibitor complex by single-molecule force spectroscopy. Electrostatic immobilization was employed to orient a carbonic anhydrase enzyme on a positively charged surface so its active site is pointing upward. This approach to immobilization effectively increases the number of specific interactions measured between the zinc ion of the active site on carbonic anhydrase and a sulfonamide inhibitor tethered to an atomic force microscope (AFM) probe. Further, it reduces the time required for data collection and thereby minimizes the possible mechanical damage to the probe and contamination of the enzyme surface. The rupture force measured at various loading rates is interpreted in terms of a single energy barrier for the carbonic anhydrase enzyme-sulfonamide inhibitor complex from which the kinetic and thermodynamic parameters were estimated on the basis of microscopic models and were compared to the Bell-Evans model. The dissociation rate for the enzyme-inhibitor complex was found to be significantly faster (~35 times) than the natural spontaneous dissociation rate.  相似文献   

4.
The carbonic anhydrase is the enzyme that catalyzes the reversible hydration of carbon dioxide and represents one of the most ancient proteins to which a plethora of works was devoted. The three main classes rely on zinc ion for activity. Most recently a new class of CA was discovered in marine diatoms to use naturally a cadmium ion as catalytic metal. In the present investigation we focused our attention on a carbonic anhydrase cambialistic enzyme (CDCA1) belonging to this new class. The study was inspired by the discovery that the replacement of zinc ion with cadmium does not entail significant differences in the catalytic performance of the enzyme. Our aim was to give further insight of the enzymatic work mechanism. Different possible reaction paths were considered for both metallic forms of the enzyme and comparison with previous studies concerning other carbonic anhydrases was made. The effects of the solvent on the energetics of the catalytic process, was also taken into account by means of a polarizable continuum model. The results obtained from density functional calculations, using a well consolidated mixing of exchange-correlation potential and basis set, and performed with a model of the active site designed on the basis of the X-ray crystal structure, proposed for both metal ions similar reaction pathways consisting in the nucleophilic attack by the metal bound hydroxide to the carbon dioxide with bicarbonate formation, in a next internal rotation of this last fragment, and then in the formation of a species ready for the product removal. Similar activation barriers were found in the rate determining steps that confirm the experimental indication concerning the comparable efficiency of the enzyme in the presence of a zinc or cadmium metal ion.  相似文献   

5.
We have extended our investigations of the carbonic anhydrase (CA) cycle with the model system [(H(3)N)(3)ZnOH](+) and CO(2) by studying further heterocumulenes and catalysts. We investigated the hydration of COS, an atmospheric trace gas. This reaction plays an important role in the global COS cycle since biological consumption, that is, uptake by higher plants, algae, lichens, and soil, represents the dominant terrestrial sink for this gas. In this context, CA has been identified by a member of our group as the key enzyme for the consumption of COS by conversion into CO(2) and H(2)S. We investigated the hydration mechanism of COS by using density functional theory to elucidate the details of the catalytic cycle. Calculations were first performed for the uncatalyzed gas phase reaction. The rate-determining step for direct reaction of COS with H(2)O has an energy barrier of deltaG=53.2 kcal mol(-1). We then employed the CA model system [(H(3)N)(3)ZnOH](+) (1) and studied the effect on the catalytic hydration mechanism of replacing an oxygen atom with sulfur. When COS enters the carbonic anhydrase cycle, the sulfur atom is incorporated into the catalyst to yield [(H(3)N)(3)ZnSH](+) (27) and CO(2). The activation energy of the nucleophilic attack on COS, which is the rate-determining step, is somewhat higher (20.1 kcal mol(-1) in the gas phase) than that previously reported for CO(2). The sulfur-containing model 27 is also capable of catalyzing the reaction of CO(2) to produce thiocarbonic acid. A larger barrier has to be overcome for the reaction of 27 with CO(2) compared to that for the reaction of 1 with CO(2). At a well-defined stage of this cycle, a different reaction path can emerge: a water molecule helps to regenerate the original catalyst 1 from 27, a process accompanied by the formation of thiocarbonic acid. We finally demonstrate that nature selected a surprisingly elegant and efficient group of reactants, the [L(3)ZnOH](+)/CO(2)/H(2)O system, that helps to overcome any deactivation of the ubiquitous enzyme CA in nature.  相似文献   

6.
The zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1) is inhibited by several classes of zinc-binders (sulfonamides, sulfamates, and sulfamides) as well as by compounds which do not interact with the metal ion (phenols, polyamines and coumarins). Here we report a new class of potent CA inhibitors which bind the zinc ion: the dithiocarbamates (DTCs). They coordinate to the zinc ion from the enzyme active site in monodentate manner and establish many favorable interactions with amino acid residues nearby. Several low nanomolar CA I, II and IX inhibitors were detected.  相似文献   

7.
There is an astonishing parallel between the mechanism generally accepted for the addition of water to CO2 catalyzed by the enzyme carbonic anhydrase and the mechanism calculated for the addition of methanol to allene catalyzed by the naturally occurring zinc silicate hemimorphite. The latter reaction was investigated in detail following the observation that hemimorphite as well as an amorphous zinc silicate prepared in situ are excellent heterogeneous catalysts for the addition of primary alcohols to alkynes and allenes [Eq. (1)].  相似文献   

8.
Binding of zonisamide, a new antiepileptic sulfonamide derivative, was examined to human erythrocytes, their lysate and their carbonic anhydrase by centrifugation for cells or by ultrafiltration for the others. Scatchard plots revealed that the binding to intact and lysed cells was composed of high- and low-affinity components and that to carbonic anhydrase, of the high-affinity component alone. Parameters for high-affinity binding were similar in all three preparations and those for low-affinity binding were similar in the former two preparations. Dissociation constants for these bindings to erythrocytes were smaller than the dissociation constant for serum albumin. These results may explain the concentration of sulfonamides in red cells, and suggest the participation of cellular protein component(s) in addition to previously known carbonic anhydrase in the binding. Acetazolamide, sulthiame, zonisamide, hydrochlorothiazide and sulfanilamide inhibited carbonic anhydrase in a non-competitive manner to different extents. The Ki values of these sulfonamides were of the order of 0.1--0.2 of their respective Kd values determined by ultrafiltration, suggesting that under the present conditions, physicochemical interactions between sulfonamides and carbonic anhydrase primarily occur at common sites that affect the activity of the enzyme.  相似文献   

9.
The carbonic anhydrase II mutant His64Cys was prepared and applied to tethered alkyne/azide cycloaddition reactions. The azide component could be tethered to the enzyme surface through a disulfide bridge, while the alkyne component was reversibly coordinated through a sulfonamide anchor to the zinc ion in the original catalytic center of the enzyme. The incipient orientation of the reactants in the binding site and of the formed triazole product were characterized by crystallography. The reaction progression could be monitored by HPLC-MS analysis.  相似文献   

10.
The catalytic mechanism for the conversion of carbon dioxide to hydrogen carbonate by a cadmium containing carbonic anhydrase was explored at density functional level employing two different models to simulate the active center of the enzyme. In the first model, the histidine residues around the metal ion were replaced with imidazole groups. Instead, in the second one, the simplest model was extended introducing two amino acidic residues generally present in the neighbor of enzyme and a deep water molecule. The results showed that cadmium carbonic anhydrase follows a reaction mechanism that is favored thermodynamically but not kinetically with respect to that of the most usual zinc-containing enzyme, both in a vacuum and in a protein environment.  相似文献   

11.
制备了碳酸酐酶活性中心模型化合物{η^3-HB(3-Phpz)3ZnX}[Ph=苯基, pz=吡唑, X=Cl^-(1), Br^-(2), I^-(3), NO3^-(4)], 通过元素分析, IR, ^1H NMR对其结构进行了表征。依据模型化合物2的晶体结构数据, 采用量子化学DV-Xα方法计算了2以及(η^3-HB(3-Phpz)3ZnOH}模型的分子轨道、键级和原子电荷,讨论了模型化合物分子的活泼原子和活泼基团。  相似文献   

12.
Catalysis of (18)O exchange between CO(2) and water catalyzed by a Co(II)-substituted mutant of human carbonic anhydrase II is analyzed to show the rate of release of H(2)(18)O from the active site. This rate, measured by mass spectrometry, is dependent on proton transfer to the metal-bound (18)O-labeled hydroxide, and was observed in a site-specific mutant of carbonic anhydrase II in which a prominent proton shuttle residue His64 was replaced by alanine, which does not support proton transport. Upon increasing the concentration of bicarbonate, the rate of release of H(2)(18)O increased in a saturable manner to a maximum of 4 x 10(5) s(-)(1), consistent with proton transfer from bicarbonate to the Co(II)-bound hydroxide. The same mutant of carbonic anhydrase containing Zn(II) had the rate of release of H(2)(18)O smaller by 10-fold, but rate of interconversion of CO(2) and HCO(3)(-) about the same as the Co(II)-containing enzyme. These data as well as solvent hydrogen isotope effects suggest that the bicarbonate transferring the proton is bound to the cobalt in the enzyme. The enhancement of (18)O exchange caused by increasing bicarbonate concentration during catalysis by the Zn(II)-containing carbonic anhydrase from the archaeon Methanosarcina thermophila suggests that a very similar mechanism for proton donation by bicarbonate occurs with this wild-type enzyme.  相似文献   

13.
The synthesis of N‐substituted‐5‐arylidenerhodanines was carried out by the optimized one‐pot sequential four‐component procedure with the condensation between 4‐aminobenzenesulfonamide, suitable aldehyde, ethyl bromoacetate, and carbon disulfide. In addition to traditional method, microwave‐irradiated and ultrasound‐irradiated techniques were implemented in water at ambitious conditions, and the target compounds were obtained in high yields and purity without purification methods. The enzyme inhibition activity of newly synthesized compounds on carbonic anhydrase (II) was also evaluated. The reference inhibitor molecule was sulfanilamide, the IC50 value of which was 3.5 μM. It was also found that the IC50 values of all examined molecules were in nanomolar level and much smaller than those of sulfanilamide. The inhibition between 93.5 and 99.6% was observed in the presence of new compounds synthesized in the present study at the accessible maximum concentration in the reaction mixtures. 5j , among the tested compounds possessing the lowest IC50 value, was found to be the most potent carbonic anhydrase (II) inhibitor.  相似文献   

14.
The investigation of carbonic anhydrase and paraoxonase enzyme inhibition properties of water-soluble zinc and gallium phthalocyanine complexes ( 1 and 2 ) are reported for the first time. The binding of p-sulfonylphenoxy moieties to the phthalocyanine structure favors excellent solubilities in water, as well as providing an inhibition effect on carbonic anhydrase (CA) I and II isoenzymes and paraoxonase (PON1) enzyme. According to biological activity results, both complexes inhibited hCA I, hCA II, and PON1. Whereas 1 and 2 showed moderate hCA I and hCA II (off-target cytosolic isoforms) inhibitory activity (Ki values of 26.09 µM and 43.11 µM for hCA I and 30.95 µM and 33.19 µM for hCA II, respectively), they exhibited strong PON1 (associated with high-density lipoprotein [HDL]) inhibitory activity (Ki values of 0.37 µM and 0.27 µM, respectively). The inhibition kinetics were analyzed by Lineweaver–Burk double reciprocal plots. It revealed that 1 and 2 were noncompetitive inhibitors against PON1, hCA I, and hCA II. These complexes can be more advantageous than other synthetic CA and PON inhibitors due to their water solubility. Docking studies were carried out to examine the interactions between hCA I, hCA II, and PON1 inhibitors and metal complexes at a molecular level and to predict binding energies.  相似文献   

15.
考察了游离碳酸酐酶吸收CO2水合体系反应条件, 并通过同轴共纺静电纺丝技术制备出中空结构纤维, 实现了碳酸酐酶在中空纤维中的原位包埋, 提高了酶的稳定性并便于回收和重复利用. 实验结果表明, 固定化碳酸酐酶的热稳定性显著增强, 受Cu2+和Fe3+等金属离子的抑制作用大幅度降低. 连续使用11次后所生成的CaCO3沉淀量仍能达到首次使用的81.9%. 固定化酶体系生成的CaCO3沉淀包括方解石型和球文石型2种晶形, 而无酶和加入游离碳酸酐酶的反应体系则主要生成方解石型CaCO3沉淀.  相似文献   

16.
The conversion of CS(2) with common carbonic anhydrase model systems has been studied using Hartree-Fock and density-functional theory methods employing the 6-311+G basis set. The calculated geometries and energetical parameters for [L(3)ZnOH](+)/CS(2) model systems (L = NH(3), imidazole) are compared with those obtained previously for the CO(2) hydration. While the same reaction mechanism applies for both heterocumulenes, the hypothetical conversion of CS(2) to give [L(3)ZnSC(O)SH](+) is characterized by a higher barrier and is much more exothermic than the corresponding CO(2) reaction cascade. Due to the increased number of heteroatoms, additional intermediates and product structures (compared with those involved in the CO(2) conversion) must be taken into account and have been analyzed in detail. The smaller electrophilicity of CS(2) is the reason for the higher activation energies, while the significantly increased exothermicity is due to the strong zinc(II)/sulfur interaction. The reversibility and therefore the existence of a catalytic cycle which could allow comparable CS(2) transformations must be questioned. Nevertheless, an interesting field of stoichiometric zinc-mediated CS(2) transformations is conceivable.  相似文献   

17.
Neutral ZnO and ZnOH molecules could be produced in a molecular beam by expansion of laser ablated zinc together with H2O, O2 or N2O seeded in a rare gas (Ar, Ne, He). Due to the characteristic Zn isotope distribution, the zinc containing compounds, ionized with a 100 fs laser pulse, could unambiguously be identified with a TOF mass spectrometer. The abundance of ZnOH produced in our experiments exceeds the one of ZnO and ZnN by orders of magnitude if H2O is present in the system. Small quantities of (ZnO)2H and Zn2(OH)3 compounds could also be observed. To our knowledge this is the first evidence for the occurrence of neutral ZnO and ZnOH molecules in a molecular beam.  相似文献   

18.
Genetic evolution of carbonic anhydrase enzyme provides an interesting instance of functional similarity in spite of structural diversity of the members of a given family of enzymes. Phylogenetic analysis of α-, β- and γ-carbonic anhydrase was carried out to determine the evolutionary relationships among various members of the family with the enzyme marking its presence in a wide range of cellular and chromosomal locations. The presence of more than one class of enzymes in a particular organism was revealed by phylogenetic time tree. The evolutionary relationships among the members of animal, plant and microbial kingdom were developed. The study revises a long-established notion of kingdom-specificity of the different classes of carbonic anhydrases and provides a new version of the presence of multiple classes of carbonic anhydrases in a single organism and the presence of a given class of carbonic anhydrase across different kingdoms.  相似文献   

19.
A novel zinc(II) hydroxide complex with a rare alkylthiolate donor in the coordination sphere is formed in aqueous solution from the dissolution of the zinc alkyl precursor complex (PATH)ZnCH(3) (PATH = 2-methyl-1-[methyl(2-pyridin-2-ylethyl)amino]propane-2-thiolate) in H(2)O and protonolysis of the Zn-C bond to give (PATH)ZnOH (1). The (PATH)ZnOH complex has been shown to promote the hydrolysis of 4-nitrophenyl acetate (4-NA) by a detailed kinetic study and is the first functional model for the zinc form of the enzyme peptide deformylase. From a fit of the sigmoidal pH-rate profile a kinetic pK(a) of 8.05(5) and a pH-independent second-order rate constant (k" max)) of 0.089(3) M(-1) s(-1) have been obtained. The kinetic pK(a) is similar to the pK(a) of 7.7(1) determined by a potentiometric study (25 degrees C, I = 0.1 (NaNO3)). Observation of both rate enhancement and turnover shows that 1 acts as a catalyst for the hydrolysis of 4-NA, although the turnovers are modest. Activation parameters have been obtained from a temperature-dependence study of the rate constants (E(a) = 54.8 kJ mol(-1), DeltaH++ = 52.4 kJ mol(-1), and DeltaS++ = -90.0 J mol(-1) K(-1)), and support a reaction mechanism which depends on nucleophilic attack of 1 in the rate-determining step. This is the first kinetic and thermodynamic study of a 4-coordinate zinc hydroxide complex containing a thiolate donor. In addition it is only the second time that a complete set of activation parameters have been obtained for the zinc-promoted hydrolysis of a carboxylic ester. This study puts the basicity and nucleophilicity of a (N(2)S)ZnOH complex in context with those of other L(n)()ZnOH complexes and enzymes.  相似文献   

20.
Thioxolone acts as a prodrug in the presence of carbonic anhydrase II (CA II), whereby the molecule is cleaved by thioester hydrolysis to the carbonic anhydrase inhibitor, 4-mercaptobenzene-1,3-diol (TH0). Thioxolone was soaked into the proton transfer mutant H64A of CA II in an effort to capture a reaction intermediate via X-ray crystallography. Structure determination of the 1.2 ? resolution data revealed the TH0 had been modified to a 4,4'-disulfanediyldibenzene-1,3-diol, a product of crystallization conditions, and a zinc ligated 2,4-dihydroxybenzenesulfenic acid, most likely induced by radiation damage. Neither ligand was likely a result of an enzymatic mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号