首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The on‐plate deposition of oxidized proteins is described to advance footprinting applications by radical probe mass spectrometry (RP‐MS). An electrospray ionization (ESI) needle assembly mounted vertically over a 384‐target matrix‐assisted laser desorption/ionization (MALDI) plate enabled the limited oxidation of proteins as they were released in the charged droplets ahead of their deposition on the plate. This method combined with on‐plate proteolytic digestion protocols expedites the analysis of proteins oxidized by RP‐MS, and avoids the need to collect and reconstitute samples prior to analysis by MALDI mass spectrometry. Oxidation of peptides from solutions in water as well as an ammonium bicarbonate solution was investigated to test the optimal conditions required for on‐plate oxidation of proteins. These comprised of peptides with a wide range of reactive amino acids including Phe, Tyr, Pro, His, Leu, Met and Lys that were previously shown to oxidize in both electrospray discharge and synchrotron radiolysis based footprinting experiments. The on‐plate deposition of lysozyme oxidized at electrospray needle voltages of 6 and 9 kV were carried out to demonstrate conditions suitable for footprinting experiments as well as those that induce the onset of protein damage. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Hemoglobin (Hb) is a tetrameric noncovalent complex consisting of two α- and two β-globin chains each associated with a heme group. Its exact assembly pathway is a matter of debate. Disorders of hemoglobin are the most common inherited disorders and subsequently the molecule has been extensively studied. This work attempts to further elucidate the structural properties of the hemoglobin tetramer and its components. Gas-phase conformations of hemoglobin tetramers and their constituents were investigated by means of traveling-wave ion mobility mass spectrometry. Sickle (HbS) and normal (HbA) hemoglobin molecules were analyzed to determine whether conformational differences in their quaternary structure could be observed. Rotationally averaged collision cross sections were estimated for tetramer, dimer, apo-, and holo-monomers with reference to a protein standard with known cross sections. Estimates of cross section obtained for the tetramers were compared to values calculated from X-ray crystallographic structures. HbS was consistently estimated to have a larger cross section than that of HbA, comparable with values obtained from X-ray crystallographic structures. Nontetrameric species observed included apo- and holo- forms of α- and β-monomers and heterodimers; α- and β-monomers in both apo- and holo- forms were found to have similar cross sections, suggesting they maintain a similar fold in the gas phase in both the presence and the absence of heme. Heme-deficient dimer, observed in the spectrum when analyzing commercially prepared Hb, was not observed when analyzing fresh blood. This implies that holo-α-apo-β is not an essential intermediate within the Hb assembly pathway, as previously proposed.  相似文献   

3.
Mass spectrometry (MS) and ion mobility with electrospray ionization (ESI) have the capability to measure and detect large noncovalent protein-ligand and protein-protein complexes. Using an ion mobility method of gas-phase electrophoretic mobility molecular analysis (GEMMA), protein particles representing a range of sizes can be separated by their electrophoretic mobility in air. Highly charged particles produced from a protein complex solution using electrospray can be manipulated to produce singly charged ions, which can be separated and quantified by their electrophoretic mobility. Results from ESI-GEMMA analysis from our laboratory and others were compared with other experimental and theoretically determined parameters, such as molecular mass and cryoelectron microscopy and X-ray crystal structure dimensions. There is a strong correlation between the electrophoretic mobility diameter determined from GEMMA analysis and the molecular mass for protein complexes up to 12 MDa, including the 93 kDa enolase dimer, the 480 kDa ferritin 24-mer complex, the 4.6 MDa cowpea chlorotic mottle virus (CCMV), and the 9 MDa MVP-vault assembly. ESI-GEMMA is used to differentiate a number of similarly sized vault complexes that are composed of different N-terminal protein tags on the MVP subunit. The average effective density of the proteins and protein complexes studied was 0.6 g/cm(3). Moreover, there is evidence that proteins and protein complexes collapse or become more compact in the gas phase in the absence of water.  相似文献   

4.
The major uncertainty related to ion mobility spectrometry is the lack of knowledge about the characteristics of the ions detected. When using a radioactive atmospheric pressure ionisation source (e.g. 63Ni), from theory proton bound water clusters are expected as reactant ions. When analyte ions occur, proton transfer should lead to proton-bound monomer and dimer ions. To increase the knowledge about those ionisation processes in an ion mobility spectrometer (IMS), a ß-radiation ionisation source was coupled to a mass spectrometer (MS) and an identical one to an IMS. Exemplarily, acetone, limonene and 2- and 5-nonanone were introduced into both instruments in varying concentrations. By correlating the MS and IMS spectra, conclusions about the identities of the ions detected by IMS could be drawn. Proton-bound monomer, dimer and even trimer ions (MH+, 2MH+, 3MH+) could be observed in the MS spectra for acetone and 5-nonanone and could be assigned to the related signals detected by IMS. The oligomers could be expected from theory for increasing concentration. Limonene and 2-nonanone yielded in a variety of different ions and fragments indicating complex gas phase ion chemistry. Those findings on the obviously different behaviour of different analytes require further research focussed on the ion chemistry in IMS including the comparison of different ionisation sources.  相似文献   

5.
Mass spectrometry and drift tube ion mobility mass spectrometry have been used to analyse several isobaric, multicomponent cages yielding information on three dimensional structure, interactions and dynamics of assembly in the gas phase.  相似文献   

6.
Hydroxyl radical protein footprinting coupled to mass spectrometry has been developed over the last decade and has matured to a powerful method for analyzing protein structure and dynamics. It has been successfully applied in the analysis of protein structure, protein folding, protein dynamics, and protein–protein and protein–DNA interactions. Using synchrotron radiolysis, exposure of proteins to a ‘white’ X‐ray beam for milliseconds provides sufficient oxidative modification to surface amino acid side chains, which can be easily detected and quantified by mass spectrometry. Thus, conformational changes in proteins or protein complexes can be examined using a time‐resolved approach, which would be a valuable method for the study of macromolecular dynamics. In this review, we describe a new application of hydroxyl radical protein footprinting to probe the time evolution of the calcium‐dependent conformational changes of gelsolin on the millisecond timescale. The data suggest a cooperative transition as multiple sites in different molecular subdomains have similar rates of conformational change. These findings demonstrate that time‐resolved protein footprinting is suitable for studies of protein dynamics that occur over periods ranging from milliseconds to seconds. In this review, we also show how the structural resolution and sensitivity of the technology can be improved as well. The hydroxyl radical varies in its reactivity to different side chains by over two orders of magnitude, thus oxidation of amino acid side chains of lower reactivity are more rarely observed in such experiments. Here we demonstrate that the selected reaction monitoring (SRM)‐based method can be utilized for quantification of oxidized species, improving the signal‐to‐noise ratio. This expansion of the set of oxidized residues of lower reactivity will improve the overall structural resolution of the technique. This approach is also suggested as a basis for developing hypothesis‐driven structural mass spectrometry experiments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Analysis of molecules by ion mobility spectrometry coupled with mass spectrometry (IMS-MS) provides chemical information on the three dimensional structure and mass of the molecules. The coupling of ion mobility to trapping mass spectrometers has historically been challenging due to the large differences in analysis time between the two devices. In this paper we present a modification of the trapped ion mobility (TIMS) analysis scheme termed “Gated TIMS” that allows efficient coupling to a Fourier Transform Ion Cyclotron Resonance (FT-ICR) analyzer. Analyses of standard compounds and the influence of source conditions on the TIMS distributions produced by ion mobility spectra of labile ubiquitin protein ions are presented. Ion mobility resolving powers up to 100 are observed. Measured collisional cross sections of ubiquitin ions are in excellent qualitative and quantitative agreement to previous measurements. Gated TIMS FT-ICR produces results comparable to those acquired using TIMS/time-of-flight MS instrument platforms as well as numerous drift tube IMS-MS studies published in the literature.  相似文献   

9.
10.
We have performed conformational analyses of heparin-derived oligosaccharide ions in the gas phase using a combination of ion-mobility mass spectrometry and molecular modelling. Negative mode electrospray ionisation was used to generate singly (disaccharide, [C12H15NO19S3Na3]-) and doubly charged (tetrasaccharides, [C24H30N2O38S6Na6]2- and [C24H31N2O35S5Na5]2-) ions containing three and six Na+ ions, respectively. Good agreement was obtained between the experimental and theoretical cross sections. The latter were obtained using modelled structures generated by the AMBER-based force field. Analysis of the conformations of the oligosaccharide ions shows that sodium cations play a major role in stabilizing these ions in the gas phase. This was seen in the formation of oligomers of the disaccharide ion and "compact" structures of tetrasaccharide ions. Interestingly, the gas phase conformations of the three tetrasaccharide ions with different primary structures were significantly different.  相似文献   

11.
Biomolecular surface mapping methods offer an important alternative method for characterizing protein-protein and protein-ligand interactions in cases in which it is not possible to determine high-resolution three-dimensional (3D) structures of complexes. Hydroxyl radical footprinting offers a significant advance in footprint resolution compared with traditional chemical derivatization. Here we present results of footprinting performed with hydroxyl radicals generated on the nanosecond time scale by laser-induced photodissociation of hydrogen peroxide. We applied this emerging method to a carbohydrate-binding protein, galectin-1. Since galectin-1 occurs as a homodimer, footprinting was employed to characterize the interface of the monomeric subunits. Efficient analysis of the mass spectrometry data for the oxidized protein was achieved with the recently developed ByOnic (Palo Alto, CA) software that was altered to handle the large number of modifications arising from side-chain oxidation. Quantification of the level of oxidation has been achieved by employing spectral intensities for all of the observed oxidation states on a per-residue basis. The level of accuracy achievable from spectral intensities was determined by examination of mixtures of synthetic peptides related to those present after oxidation and tryptic digestion of galectin-1. A direct relationship between side-chain solvent accessibility and level of oxidation emerged, which enabled the prediction of the level of oxidation given the 3D structure of the protein. The precision of this relationship was enhanced through the use of average solvent accessibilities computed from 10 ns molecular dynamics simulations of the protein.  相似文献   

12.
trans-1,2-Bis([2.2]paracyclophanyl)ethene (1) exists as a pair of diastereomers whose conformations, and thus effective collision cross sections, are quite different. The two forms can be obtained by different transition metal-catalyzed reactions. To assign meso and racemic structures, a novel method is reported in which experimental gas-phase ion mobility data are compared with theoretical structures obtained from molecular mechanics calculations.  相似文献   

13.
Ion mobility coupled with mass spectrometry provides a fast and repeatable method to separate catechin epimers by previous complexation with selected chiral modifiers and transition metals. Several combinations with chiral ligands such as D‐ and L‐amino acids and/or additional metal cations, chiral crown ethers, tartaric acid and heptakis(2,6‐di‐O‐methyl)‐β‐cyclodextrin were screened for their ability to affect the separation efficiency. The clusters having the form of [2M + D‐amino acid + Cu2+ ? 3H]? (M stands for (?)‐epicatechin or (+)‐catechin) showed improvement in stereodifferentiation between two epimeric catechins in comparison to the analysis of pure epimers, where no separation was observed or the separation was hampered by the formation of mixed dimer complexes. Among various examined D‐amino acids only those possessing hydrophobic side chains induced the improvement of separation efficiency. The best peak‐to‐peak resolution (Rp–p) was determined to be 0.71 for [2M + D‐Leucine + Cu2+ ? 3H]? clusters. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
MALDI imaging mass spectrometry (MALDI-IMS) has become a powerful tool for the detection and localization of drugs, proteins, and lipids on-tissue. Nevertheless, this approach can only perform identification of low mass molecules as lipids, pharmaceuticals, and peptides. In this article, a combination of approaches for the detection and imaging of proteins and their identification directly on-tissue is described after tryptic digestion. Enzymatic digestion protocols for different kinds of tissues—formalin fixed paraffin embedded (FFPE) and frozen tissues—are combined with MALDI-ion mobility mass spectrometry (IM-MS). This combination enables localization and identification of proteins via their related digested peptides. In a number of cases, ion mobility separates isobaric ions that cannot be identified by conventional MALDI time-of-flight (TOF) mass spectrometry. The amount of detected peaks per measurement increases (versus conventional MALDI-TOF), which enables mass and time selected ion images and the identification of separated ions. These experiments demonstrate the feasibility of direct proteins identification by ion-mobility-TOF IMS from tissue. The tissue digestion combined with MALDI-IM-TOF-IMS approach allows a proteomics “bottom-up” strategy with different kinds of tissue samples, especially FFPE tissues conserved for a long time in hospital sample banks. The combination of IM with IMS marks the development of IMS approaches as real proteomic tools, which brings new perspectives to biological studies.  相似文献   

15.
The contamination of barley by molds on the field or in storage leads to the spoilage of grain and the production of mycotoxins, which causes major economic losses in malting facilities and breweries. Therefore, on‐site detection of hidden fungus contaminations in grain storages based on the detection of volatile marker compounds is of high interest. In this work, the volatile metabolites of 10 different fungus species are identified by gas chromatography (GC) combined with two complementary mass spectrometric methods, namely, electron impact (EI) and chemical ionization at atmospheric pressure (APCI)‐mass spectrometry (MS). The APCI source utilizes soft X‐radiation, which enables the selective protonation of the volatile metabolites largely without side reactions. Nearly 80 volatile or semivolatile compounds from different substance classes, namely, alcohols, aldehydes, ketones, carboxylic acids, esters, substituted aromatic compounds, alkenes, terpenes, oxidized terpenes, sesquiterpenes, and oxidized sesquiterpenes, could be identified. The profiles of volatile and semivolatile metabolites of the different fungus species are characteristic of them and allow their safe differentiation. The application of the same GC parameters and APCI source allows a simple method transfer from MS to ion mobility spectrometry (IMS), which permits on‐site analyses of grain stores. Characterization of IMS yields limits of detection very similar to those of APCI‐MS. Accordingly, more than 90% of the volatile metabolites found by APCI‐MS were also detected in IMS. In addition to different fungus genera, different species of one fungus genus could also be differentiated by GC‐IMS.  相似文献   

16.
In recent years, the resolving power of ion mobility instruments has been increased significantly, enabling ion mobility spectrometry (IMS) to be utilized as an analytical separation technique for complex mixtures. In theory, decreasing the drift tube temperature results in increased resolution due to decreased ion diffusion. However, the heat requirements for complete ion desolvation with electrospray ionization (ESI) have limited the reduction of temperatures in atmospheric pressure ion mobility instruments. Micro-electrospray conditions were investigated in this study to enable more efficient droplet formation and ionization with the objective of reducing drift tube temperatures and increasing IMS resolution. For small molecules (peptides), the drift tube temperature was reduced to ambient temperature with good resolution by employing reduced capillary diameters and flow rates. By employing micro-spray conditions, experimental resolution values approaching theoretically predicted resolution were achieved over a wide temperature range (30 to 250 °C). The historical heat requirements of atmospheric pressure IMS due to ESI desolvation were eliminated due to the use of micro-spray conditions and the high-resolution IMS spectra of GLY-HIS-LYS was obtained at ambient temperature. The desolvation of proteins (cytochrome c) was found to achieve optimal resolution at temperatures greater than 125 °C. This is significantly improved from earlier IMS studies that required drift tube temperatures of 250°C for protein desolvation.  相似文献   

17.
18.
This study investigated the ion mobility (IM) and the collision cross section (CCS) of fatty acids (FAs) using electrospray IM MS. The IM analysis of 18 FA ions showed intriguing differences among the saturated FAs, monounsaturated FAs, multi‐unsaturated FAs, and cis‐isomer/trans‐isomer with respect to the aliphatic tail chains. The length of aliphatic tail chain present in the ion structures had a strong influence on the differentiation of drift, while the number of double bond showed a weaker influence. The tiny drift differences between cis‐isomer and trans‐isomer were also observed. In the CCS measurements, two internal standards were involved in the mobility calibration and accuracy estimation. It insured our empirical CCS values were of high experimental precision (±0.35% or better) and accuracy (±0.25% or better). Moreover, the mass‐to‐charge ratio (m/z) – mobility plots obtained by ion mobility spectrometry with mass spectrometry analysis of FAs – was used to investigate the structural relationship between the molecules. Each series of FAs sharing a similar structure was aligned in the linear plot. Finally, the developed procedure was applied to the determination of FAs in rat adipose tissues, and it allowed the presence of 13 FAs to be confirmed with their exact masses and CCS values. These studies reveal the direct relationship between the behaviors in IM and the molecular structures and thus may provide further validations to the FA identification process. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Laser-based ion mobility (IM) spectrometry was used for the detection of neuroleptics and PAH. A gas chromatograph was connected to the IM spectrometer in order to investigate compounds with low vapour pressure. The substances were ionized by resonant two-photon ionization at the wavelengths λ?=?213 and 266 nm and pulse energies between 50 and 300 μJ. Ion mobilities, linear ranges, limits of detection and response factors are reported. Limits of detection for the substances are in the range of 1–50 fmol. Additionally, the mechanism of laser ionization at atmospheric pressure was investigated. First, the primary product ions were determined by a laser-based time-of-flight mass spectrometer with effusive sample introduction. Then, a combination of a laser-based IM spectrometer and an ion trap mass spectrometer was developed and characterized to elucidate secondary ion–molecule reactions that can occur at atmospheric pressure. Some substances, namely naphthalene, anthracene, promazine and thioridazine, could be detected as primary ions (radical cations), while other substances, in particular acridine, phenothiazine and chlorprothixene, are detected as secondary ions (protonated molecules). The results are interpreted on the basis of quantum chemical calculations, and an ionization mechanism is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号