首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultraviolet (UV) absorption cross sections of CF(3)CH(2)CHO were determined between 230 and 350 nm by gas-phase UV spectroscopy. The forbidden n → π* transition was characterized as a function of temperature (269-323 K). In addition, the photochemical degradation of CF(3)CH(2)CHO was investigated at 308 nm. The possible photolysis channels are: CF(3)CH(2) + HCO , CF(3)CH(3) + CO , and CF(3)CH(2)CO + H . Photolysis quantum yields of CF(3)CH(2)CHO at 308 nm, Φ(λ=308nm), were measured as a function of pressure (25-760 Torr of synthetic air). The pressure dependence of Φ(λ=308nm) can be expressed as the following Stern-Volmer equation: 1/Φ(λ=308nm) = (4.65 ± 0.56) + (1.51 ± 0.04) × 10(-18) [M] ([M] in molecule cm(-3)). Using the absorption cross sections and the photolysis quantum yields reported here, the photolysis rate coefficient of this fluorinated aldehyde throughout the troposphere was estimated. This calculation shows that tropospheric photolysis of CF(3)CH(2)CHO is competitive with the removal initiated by OH radicals at low altitudes, but it can be the major degradation route at higher altitudes. Photodegradation products (CO, HC(O)OH, CF(3)CHO, CF(3)CH(2)OH, and F(2)CO) were identified and also quantified by Fourier transform infrared spectroscopy. CF(3)CH(2)C(O)OH was identified as an end-product as a result of the chemistry involving CF(3)CH(2)CO radicals formed in the OH + CF(3)CH(2)CHO reaction. In the presence of an OH-scavenger (cyclohexane), CF(3)CH(2)C(O)OH was not detected, indicating that channel (R1c) is negligible. Based on a proposed mechanism, our results provide strong evidences of the significant participation of the radical-forming channel (R1a).  相似文献   

2.
The quantum yields for OH formation from the photolysis of HNO(3) were measured to be (0.88 +/- 0.09) at 248 and (1.05 +/- 0.29) at 308 nm and of H(2)O(2) to be (1.93 +/- 0.39) at 308 and (1.96 +/- 0.50) at 320 nm. The quoted uncertainties are at the 95% confidence level and include estimated systematic uncertainties. OH radicals were produced using pulsed laser photolysis and monitored using pulsed laser-induced fluorescence. Quantum yields were measured relative to the OH quantum yields from a reference system. The measured quantum yields at 248 nm are in agreement with previous direct determinations. The quantum yield values at 308 and 320 nm are the first direct quantum yield measurements at these wavelengths and confirm the values currently recommended for atmospheric model calculations. Rate coefficients (at 298 K) for the OH + H(2)O(2) and OH + HNO(3) + M (in 100 Torr of N(2)) reactions were measured during this study to be (1.99 +/- 0.16) x 10(-12) cm(3) molecule(-1) s(-1) and (1.44 +/- 0.12) x 10(-13) cm(3) molecule(-1) s(-1), respectively.  相似文献   

3.
The visible absorption spectrum of the acetyl radical, CH(3)CO, was measured between 490 and 660 nm at 298 K using cavity ring-down spectroscopy. Gas-phase CH(3)CO radicals were produced using several methods including: (1) 248 nm pulsed laser photolysis of acetone (CH(3)C(O)CH(3)), methyl ethyl ketone (MEK, CH(3)C(O)CH(2)CH(3)), and biacetyl (CH(3)C(O)C(O)CH(3)), (2) Cl + CH(3)C(O)H --> CH(3)C(O) + HCl with Cl atoms produced via pulsed laser photolysis or in a discharge flow tube, and (3) OH + CH(3)C(O)H --> CH(3)CO + H(2)O with two different pulsed laser photolysis sources of OH radicals. The CH(3)CO absorption spectrum was assigned on the basis of the consistency of the spectra obtained from the different CH(3)CO sources and agreement of the measured rate coefficients for the reaction of the absorbing species with O(2) and O(3) with literature values for the CH(3)CO + O(2) + M and CH(3)CO + O(3) reactions. The CH(3)CO absorption spectrum between 490 and 660 nm has a broad peak centered near 535 nm and shows no discernible structure. The absorption cross section of CH(3)CO at 532 nm was measured to be (1.1 +/- 0.2) x 10(-19) cm(2) molecule(-1) (base e).  相似文献   

4.
Nitrophenols and methylnitrophenols have been identified as photolytic precursors of nitrous acid, HONO, but their gas-phase absorption has not previously been reported. In this study, the absorption cross sections of 2-nitrophenol, 3-methyl-2-nitrophenol, and 4-methyl-2-nitrophenol were measured from 320 to 450 nm using incoherent broad-band cavity-enhanced absorption spectroscopy (IBBCEAS). The benzaldehyde absorption spectrum was measured to validate the approach and was in good agreement with literature spectra. The nitrophenol absorption cross sections are large (ca. 10(-17) cm(2) molecule(-1)) and blue-shifted about 20 nm compared to previously measured solution spectra. Besides forming HONO, nitrophenol absorption influences other photochemistry by reducing the available actinic flux. The magnitudes of both effects are evaluated as a function of solar zenith angle, and nitrophenol absorption is shown to lower the photolysis rates of O(3) and NO(2).  相似文献   

5.
Absolute absorption cross sections for selected lines of the OH stretch overtone 2ν(1) of the cis-isomer of nitrous acid HONO have been measured in the range 6623.6-6645.6 cm(-1) using the continuous wave cavity ring-down spectroscopy (cw-CRDS) technique. HONO has been generated by two different, complementary methods: in the first method, HONO has been produced by pulsed photolysis of H(2)O(2)/NO mixture at 248 nm, and in the second method HONO has been produced in a continuous manner by flowing humidified N(2) over 5.2 M HCl and 0.5 M NaNO(2) solutions. Laser photolysis synchronized with the cw-CRDS technique has been used to measure the absorption spectrum of HONO produced in the first method, and a simple cw-CRDS technique has been used in the second method. The first method, very time-consuming, allows for an absolute calibration of the absorption spectrum by comparison with the well-known HO(2) absorption cross section, while the second method is much faster and leads to a better signal-to-noise ratio. The strongest line in this wavelength range has been found at 6642.51 cm(-1) with σ = (5.8 ± 2.2) × 10(-21) cm(2).  相似文献   

6.
Reaction of methyl radicals with hydroxyl radicals, CH(3) + OH → products (1) was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 294-714 K temperature and 1-100 bar pressure ranges (bath gas He). Methyl radicals were produced by photolysis of acetone at 193.3 nm. Hydroxyl radicals were generated in reaction of electronically excited oxygen atoms O((1)D), produced in the photolysis of N(2)O at 193.3 nm, with H(2)O. Temporal profiles of CH(3) were recorded via absorption at 216.4 nm using xenon arc lamp and a spectrograph; OH radicals were monitored via transient absorption of light from a dc discharge H(2)O/Ar low pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light inside the reactor was determined by an accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The results of this study indicate that the rate constant of reaction 1 is pressure independent within the studied pressure and temperature ranges and has slight negative temperature dependence, k(1) = (1.20 ± 0.20) × 10(-10)(T/300)(-0.49) cm(3) molecule(-1) s(-1).  相似文献   

7.
The photolysis of chlorine peroxide (ClOOCl) is understood to be a key step in the destruction of polar stratospheric ozone. This study generated and purified ClOOCl in a novel fashion, which resulted in spectra with low impurity levels and high peak absorbances. The ClOOCl was generated by laser photolysis of Cl2 in the presence of ozone, or by photolysis of ozone in the presence of CF2Cl2. The product ClOOCl was collected, along with small amounts of impurities, in a trap at about -125 degrees C. Gas-phase ultraviolet spectra were recorded using a long path cell and spectrograph/diode array detector as the trap was slowly warmed. The spectrum of ClOOCl could be fit with two Gaussian-like expressions, corresponding to two different electronic transitions, having similar energies but different widths. The energies and band strengths of these two transitions compare favorably with previous ab initio calculations. The cross sections of ClOOCl at wavelengths longer than 300 nm are significantly lower than all previous measurements or estimates. These low cross sections in the photolytically active region of the solar spectrum result in a rate of photolysis of ClOOCl in the stratosphere that is much lower than currently recommended. For conditions representative of the polar vortex (solar zenith angle of 86 degrees, 20 km altitude, and O3 and temperature profiles measured in March 2000) calculated photolysis rates are a factor of 6 lower than the current JPL/NASA recommendation. This large discrepancy calls into question the completeness of present atmospheric models of polar ozone depletion.  相似文献   

8.
The photochemistry of Cl(2)O (dichlorine monoxide) was studied using measurements of its UV/vis absorption spectrum temperature dependence and the O((3)P) atom quantum yield, Φ(Cl(2)O)(O)(λ), in its photolysis at 193 and 248 nm. The Cl(2)O UV/vis absorption spectrum was measured over the temperature range 201-296 K between 200 and 500 nm using diode array spectroscopy. Cl(2)O absorption cross sections, σ(Cl(2)O)(λ,T), at temperatures <296 K were determined relative to its well established room temperature values. A wavelength and temperature dependent parameterization of the Cl(2)O spectrum using the sum of six Gaussian functions, which empirically represent transitions from the ground (1)A(1) electronic state to excited states, is presented. The Gaussian functions are found to correlate well with published theoretically calculated vertical excitation energies. O((3)P) quantum yields in the photolysis of Cl(2)O at 193 and 248 nm were measured using pulsed laser photolysis combined with atomic resonance fluorescence detection of O((3)P) atoms. O((3)P) quantum yields were measured to be 0.85 ± 0.15 for 193 nm photolysis at 296 K and 0.20 ± 0.03 at 248 nm, which was also found to be independent of temperature (220-352 K) and pressure (17 and 28 Torr, N(2)). The quoted uncertainties are at the 2σ (95% confidence) level and include estimated systematic errors. ClO radical temporal profiles obtained following the photolysis of Cl(2)O at 248 nm, as reported previously in Feierabend et al. [J. Phys. Chem. A 114, 12052, (2010)], were interpreted to establish a <5% upper-limit for the O + Cl(2) photodissociation channel, which indicates that O((3)P) is primarily formed in the three-body, O + 2Cl, photodissociation channel at 248 nm. The analysis also indirectly provided a Cl atom quantum yield of 1.2 ± 0.1 at 248 nm. The results from this work are compared with previous studies where possible.  相似文献   

9.
The kinetics of the reaction between O atoms and OH radicals, both in their electronic ground state, have been investigated at temperatures down to ca. 39 K. The experiments employed a CRESU (Cinétique deRéaction en Ecoulement Supersonique Uniforme) apparatus to attain low temperatures. Both reagents were created using pulsed laser photolysis at 157.6 nm of mixtures containing H2O and O2 diluted in N2 carrier gas. OH radicals were formed by both direct photolysis of H2O and the reaction between O(1D) atoms and H2O. O(3P) atoms were formed both as a direct product of O2 photolysis and by the rapid quenching of O(1D) atoms formed in that photolysis by N2 and O2. The rates of removal of OH radicals were observed by laser-induced fluorescence, and concentrations of O atoms were estimated from a knowledge of the absorption cross-section for O2 at 157.6 nm and of the measured fluence from the F2 laser at this wavelength. To obtain a best estimate of the rate constants for the O + OH reaction, we had to correct the raw experimental data for the following: (a) the decrease in the laser fluence along the jet due to the absorption by O2 in the gas mixture, (b) the increase in temperature, and consequent decrease in gas density, as a result of energy released in the photochemical and chemical processes that occurred, and (c) the formation of OH(v = 0) as a result of relaxation, particularly by O2, of OH radicals formed in levels v > 0. Once these corrections were made, the rate constant for reaction between OH and O(3P) atoms showed little variation in the temperature range of 142 to 39 K and had a value of (3.5 +/- 1.0) x 10(-11) cm3 molecule(-1) s(-1). It is recommended that this value is used in future chemical models of dense interstellar clouds.  相似文献   

10.
Absolute room temperature (294 ± 2 K) absorption cross sections for the ?(1)A(2)-X?(1)A(1) electronic transition of formaldehyde have been measured over the spectral range 30,285-32,890 cm(-1) (304-330 nm) using ultraviolet (UV) laser absorption spectroscopy. Accurate high-resolution absorption cross sections are essential for atmospheric monitoring and understanding the photochemistry of this important atmospheric compound. Absorption cross sections were obtained at an instrumental resolution better than 0.09 cm(-1), which is slightly broader than the Doppler width of a rotational line of formaldehyde at 300 K (~0.07 cm(-1)) and so we were able to resolve all but the most closely spaced lines. Comparisons with previous data as well as with computer simulations have been made. Pressure broadening was studied for the collision partners He, O(2), N(2), and H(2)O and the resulting broadening parameters have been measured and increase with the strength of intermolecular interaction between formaldehyde and the collision partner. The pressure broadening coefficient for H(2)O is an order of magnitude larger than the coefficients for O(2) and N(2) and will contribute significantly to spectral line broadening in the lower atmosphere. Spectral data are made available as Supporting Information.  相似文献   

11.
Self-reaction of hydroxyl radicals, OH + OH → H(2)O + O (1a) and OH + OH → H(2)O(2) (1b), was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 298-834 K temperature and 1-100 bar pressure ranges (bath gas He). A heatable high-pressure flow reactor was employed. Hydroxyl radicals were prepared using reaction of electronically excited oxygen atoms, O((1)D), produced in photolysis of N(2)O at 193 nm, with H(2)O. The temporal behavior of OH radicals was monitored via transient absorption of light from a dc discharge in H(2)O/Ar low-pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light was determined by accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The results of this study combined with the literature data indicate that the rate constant of reaction 1a, associated with the pressure independent component, decreases with temperature within the temperature range 298-414 K and increases above 555 K. The pressure dependent rate constant for (1b) was parametrized using the Troe expression as k(1b,inf) = (2.4 ± 0.6) × 10(-11)(T/300)(-0.5) cm(3) molecule(-1) s(-1), k(1b,0) = [He] (9.0 ± 2.2) × 10(-31)(T/300)(-3.5±0.5) cm(3) molecule(-1) s(-1), F(c) = 0.37.  相似文献   

12.
The absolute gas phase ultraviolet absorption spectra of trichlorovinylsilane and allyltrichlorosilane have been measured from 191 to 220 nm. Over this region the absorption spectra of both species are broad and relatively featureless, and their cross sections increase with decreasing wavelength. The electronic transitions of trichlorovinylsilane were calculated by ab initio quantum chemical methods and the observed absorption bands assigned to the A(1)A'<-- X[combining tilde](1)A' transition. The maximum absorption cross section in the region, at 191 nm, is sigma = (8.50 +/- 0.06) x 10(-18) cm(2) for trichlorovinylsilane and sigma = (2.10 +/- 0.02) x 10(-17) cm(2) for allyltrichlorosilane. The vinyl radical and the allyl radical are formed promptly from the 193 nm photolysis of their respective trichlorosilane precursors. By comparison of the transient visible absorption and the 1315 nm I atom absorption from 266 nm photolysis of vinyl iodide and allyl iodide, the absorption cross sections at 404 nm of vinyl radical ((2.9 +/- 0.4) x 10(-19) cm(2)) and allyl radical ((3.6 +/- 0.8) x 10(-19) cm(2)) were derived. These cross sections are in significant disagreement with literature values derived from kinetic modeling of allyl or vinyl radical self-reactions. Using these cross sections, the vinyl radical yield from trichlorovinylsilane was determined to be phi = (0.9 +/- 0.2) per 193 nm photon absorbed, and the allyl radical yield from allyltrichlorosilane phi = (0.7 +/- 0.2) per 193 nm photon absorbed.  相似文献   

13.
The infrared and ultraviolet-visible absorption cross sections, effective quantum yield of photolysis, and OH, Cl, and NO3 reaction rate coefficients of CHF2CHO are reported. Relative rate measurements at 298 +/- 2 K and 1013 +/- 10 hPa gave kOH = (1.8 +/- 0.4) x 10(-12) cm3 molecule(-1) s(-1) (propane as reference compound), kCl = (1.24 +/- 0.13) x 10(-11) cm3 molecule(-1) s(-1) (ethane as reference compound), and kNO3 = (5.9 +/- 1.7) x 10(-17) cm3 molecule(-1) s(-1) (trans-dichloroethene as reference compound). The photolysis of CHF2CHO has been investigated under pseudonatural tropospheric conditions in the European simulation chamber, Valencia, Spain (EUPHORE), and an effective quantum yield of photolysis equal to 0.30 +/- 0.05 over the wavelength range 290-500 nm has been extracted. The tropospheric lifetime of CHF2CHO is estimated to be around 1 day and is determined by photolysis. The observed photolysis rates of CH3CHO, CHF2CHO, and CF3CHO are discussed on the basis of results from quantum chemical calculations.  相似文献   

14.
Production of gaseous OH radicals in the 248-350 nm photoirradiation of NO3(-) doped on amorphous ice at 100 K was monitored directly by using resonance-enhanced multiphoton ionization. The translational energy distribution of the OH product was represented by a Maxwell-Boltzmann energy distribution with the translational temperature of 3250 +/- 250 K. The rotational temperature was estimated to be 175 +/- 25 K. We have confirmed that the OH production should be attributed to the secondary photolysis of H2O2 produced on ice surface on the basis of the results of controlled photolysis experiments for H2O2 doped on ice surface.  相似文献   

15.
Pulsed laser photolysis combined with transient absorption spectroscopy and resonance fluorescence was used to examine the photolysis of OIO at a number of wavelengths corresponding to absorption bands in its visible spectrum between approximately 530 and 570 nm. Photolysis at 532 nm was found to result in substantial depopulation of the absorbing ground state, enabling an estimate for the absorption cross section of OIO at 610.2 nm of (6 +/- 2) x 10(-18) cm2 molecule(-1) to be obtained. No evidence was found for I atom formation following photolysis of OIO at 532, 562.3, 567.9 and 573.8 nm, enabling an upper limit to the I atom quantum yield of < 0.05 (560-580 nm) and < 0.24 (532 nm) to be established.  相似文献   

16.
Absolute quantum yields for the radical (H + HCO) channel of HCHO photolysis, Phi(HCO), have been measured for the tropospherically relevant range of wavelengths (lambda) between 300 and 330 nm. The HCO photoproduct was directly detected by using a custom-built, combined ultra-violet (UV) absorption and cavity ring down (CRD) detection spectrometer. This instrument was previously employed for high-resolution (spectral resolution approximately 0.0035 nm) measurements of absorption cross-sections of HCHO, sigma(HCHO)(lambda), and relative HCO quantum yields. Absolute Phi(HCO) values were measured at seven wavelengths, lambda = 303.70, 305.13, 308.87, 314.31, 320.67, 325.59, and 329.51 nm, using an independent calibration technique based on the simultaneous UV photolysis of HCHO and Cl(2). These Phi(HCO) measurements display greater variability as a function of wavelength than the current NASA-JPL recommendations for Phi(HCO). The absolute Phi(HCO)(lambda) determinations and previously measured sigma(HCHO)(lambda) were used to scale an extensive set of relative HCO yield measurements. The outcome of this procedure is a full suite of data for the product of the absolute radical quantum yield and HCHO absorption cross-section, Phi(HCO)(lambda)sigma(HCHO)(lambda), at wavelengths from 302.6 to 331.0 nm with a wavelength resolution of 0.005 nm. This product of photochemical parameters is combined with high-resolution solar photon flux data to calculate the integrated photolysis rate of HCHO to the radical (H + HCO) channel, J(HCO). Comparison with the latest NASA-JPL recommendations, reported at 1 nm wavelength resolution, suggests an increased J(HCO) of 25% at 0 degrees solar zenith angle (SZA) increasing to 33% at high SZA (80 degrees). The differences in the calculated photolysis rate compared with the current HCHO data arise, in part, from the higher wavelength resolution of the current data set and highlight the importance of using high-resolution spectroscopic techniques to achieve a complete and accurate picture of HCHO photodissociation processes. All experimental Phi(HCO)(lambda)sigma(HCHO)(lambda) data are available for the wavelength range 302.6-331.0 nm (at 294 and 245 K and under 200 Torr of N(2) bath gas) as Supporting Information with wavelength resolutions of 0.005, 0.1, and 1.0 nm. Equivalent data sets of Phi(H(2)+CO)(lambda)sigma(HCHO)(lambda) for the molecular (H(2) + CO) photofragmentation channel, produced using the measured Phi(HCO)(lambda) sigma(HCHO)(tau) values, are also provided at 0.1 and 1.0 nm resolution.  相似文献   

17.
The formation of CH(3) in the 248 or 266 nm photolysis of acetone (CH(3)C(O)CH(3)), 2-butanone (methylethylketone, MEK, CH(3)C(O)C(2)H(5)) and acetyl bromide (CH(3)C(O)Br) was examined using the pulsed photolytic generation of the radical and its detection by transient absorption spectroscopy at 216.4 nm. Experiments were carried out at room temperature (298 +/- 3 K) and at pressures between approximately 5 and 1500 Torr N(2). Quantum yields for CH(3) formation were derived relative to CH(3)I photolysis at the same wavelength in back-to-back experiments. For acetone at 248 nm, the yield of CH(3) was greater than unity at low pressures (1.42 +/- 0.15 extrapolated to zero pressure) confirming that a substantial fraction of the CH(3)CO co-product can dissociate to CH(3) + CO under these conditions. At pressures close to atmospheric the quantum yield approached unity, indicative of almost complete collisional relaxation of the CH(3)CO radical. Measurements of increasing CH(3)CO yield with pressure confirmed this. Contrasting results were obtained at 266 nm, where the yields of CH(3) (and CH(3)CO) were close to unity (0.93 +/- 0.1) and independent of pressure, strongly suggesting that nascent CH(3)CO is insufficiently activated to decompose on the time scales of these experiments at 298 K. In the 248 nm photolysis of CH(3)C(O)Br, CH(3) was observed with a pressure independent quantum yield of 0.92 +/- 0.1 and CH(3)CO remained below the detection limit, suggesting that CH(3)CO generated from CH(3)COBr photolysis at 248 nm is too highly activated to be quenched by collision. Similar to CH(3)C(O)CH(3), the photolysis of CH(3)C(O)C(2)H(5) at 248 nm revealed pressure dependent yields of CH(3), decreasing from 0.45 at zero pressure to 0.19 at pressures greater than 1000 Torr with a concomitant increase in the CH(3)CO yield. As part of this study, the absorption cross section of CH(3) at 216.4 nm (instrumental resolution of 0.5 nm) was measured to be (4.27 +/- 0.2) x 10(-17) cm(2) molecule(-1) and that of C(2)H(5) at 222 nm was (2.5 +/- 0.6) x 10(-18) cm(2) molecule(-1). An absorption spectrum of gas-phase CH(3)C(O)Br (210-305 nm) is also reported for the first time.  相似文献   

18.
Flash photolysis (FP) coupled to resonance fluorescence (RF) was used to measure the absolute rate coefficients (k(1)) for the reaction of OH(X(2)Π) radicals with diiodomethane (CH(2)I(2)) over the temperature range 295-374 K. The experiments involved time-resolved RF detection of the OH (A(2)Σ(+)→X(2)Π transition at λ = 308 nm) following FP of the H(2)O/CH(2)I(2)/He mixtures. The OH(X(2)Π) radicals were produced by FP of H(2)O in the vacuum-UV at wavelengths λ > 120 nm. Decays of OH radicals in the presence of CH(2)I(2) are observed to be exponential, and the decay rates are found to be linearly dependent on the CH(2)I(2) concentration. The results are described by the Arrhenius expression k(1)(T) = (4.2 ± 0.5) × 10(-11) exp[-(670 ± 20)K/T] cm(3) molecule(-1) s(-1). The implications of the reported kinetic results for understanding the atmospheric chemistry of CH(2)I(2) are discussed.  相似文献   

19.
The rate coefficient of the OH reaction with the perfluoroaldehydes C(3)F(7)CHO and C(4)F(9)CHO have been determined in the temperature range 252-373 K using the pulsed laser photolysis-laser induced fluorescence (PLP-LIF) method: k(C(3)F(7)CHO+OH) = (2.0 +/- 0.6) x 10(-12) exp[-(369 +/- 90)/T] and k(C(4)F(9)CHO+OH) = (2.0 +/- 0.5) x 10(-12) exp[-(356 +/- 70)/T] cm(3) molecule(-1) s(-1), corresponding to (5.8 +/- 0.6) x 10(-13) and (6.1 +/- 0.5) x 10(-13) cm(3) molecule(-1) s(-1), respectively, at 298 K. The UV absorption cross sections of these two aldehydes and CF(3)(CF(2))(5)CH(2)CHO have been measured over the range 230-390 nm at 298 K and also at 328 K for CF(3)(CF(2))(5)CH(2)CHO. The obtained results for C(3)F(7)CHO and C(4)F(9)CHO are in good agreement with two recent determinations but the maximum value of the absorption cross section for CF(3)(CF(2))(5)CH(2)CHO is over a factor of two lower than the single one recently published. The photolysis rates of C(3)F(7)CHO, C(4)F(9)CHO and CF(3)(CF(2))(5)CHO have been measured under sunlight conditions in the EUPHORE simulation chamber in Valencia (Spain) at the beginning of June. The photolysis rates were, respectively, J(obs) = (1.3 +/- 0.6) x 10(-5), (1.9 +/- 0.8) x 10(-5) and (0.6 +/- 0.3) x 10(-5) s(-1). From the J(obs) measurements and calculated photolysis rate J(calc), assuming a quantum yield of unity across the atmospheric range of absorption of the aldehydes, quantum yields J(obs)/J(calc) = (0.023 +/- 0.012), (0.029 +/- 0.015) and (0.046 +/- 0.028) were derived for the photodissociation of C(3)F(7)CHO, C(4)F(9)CHO and CF(3)(CF(2))(5)CHO, respectively. The atmospheric implication of the data obtained in this work is discussed. The main conclusion is that the major atmospheric removal pathway for fluoroaldehydes will be photolysis, which under low NO(x) conditions, may be a source of fluorinated carboxylic acids in the troposphere.  相似文献   

20.
Photodissociation dynamics of salicylic acid (SA) in the gas phase at different photolysis wavelengths (266, 315-317 nm) is investigated by probing the nascent OH photoproduct employing the single-photon laser-induced fluorescence (LIF) technique. At all the photolysis wavelengths it is found that the nascent OH radicals are produced mostly in a vibrationally ground state (υ' = 0) and have similar rotational state distributions. The two spin-orbit and Λ-doublet states of the OH fragment formed in the dissociation are measured to have a nonstatistical distribution at each photolysis wavelength. The LIF signal of the OH could be observed upon photolysis at 317 nm but not at 317.5 nm. The threshold of OH formation from SA photodissociation is estimated to be 98.2 ± 0.9 kcal/mol. The effect of the phenolic OH group on the dissociation of SA is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号