首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zein is an amphiphilic protein capable of self-assembly into microspheres. Zein microspheres may form by evaporation-induced self-assembly (EISA) of zein solutions in ethanol/water. The formation of microspheres is of particular interest for the development of delivery systems. Zein solutions in ethanol/water 75?% (v/v) were slowly evaporated to promote self-assembly of microspheres. The ethanol content of the solvent decreased during EISA changing solvent polarity which induced self-assembly of zein particles. The growth of zein spheres was modeled from the hydrophobic and hydrophilic contributions to the interfacial free energy (R 2?=?0.92). The good fit indicated that during EISA zein microspheres increased in size due to hydrophobic interactions between zein molecules. The model may allow the prediction of evaporation time and thus control over microsphere size.  相似文献   

2.
Self-assembly of small molecules into highly ordered nanostructures offers many important potential applications in science research and industry. Precise self-assembling with the assistance of inorganic substrate is considered as an ideal strategy. In this experiment, the highly ordered mica surface was used to template the assembling of a novel designed amphiphilic hexapeptide to form orderly parallel fibers. The nanostructure and the self-assembly mechanism were investigated by atomic force microscopy (AFM), transmission electron microscopy, Fourier transform infrared spectroscopy, and circular dichroism techniques. By the experimental results, a dramatic conformation transition from random coil and/or α-helix into β-sheet was found after the peptide assembled on the mica surface under certain conditions, which was considered as a key factor for the ordered nanostructure. Finally, according to the AFM images and the simulated length of peptide molecules, a trilaminar β-sheet structure model was proposed to explain the hierarchical self-assembly mechanism.  相似文献   

3.
The pathologic self-assembly of proteins is associated with typically late-onset disorders such as Alzheimer's disease, Parkinson's disease, and type 2 diabetes. Important mechanistic details of the self-assembly are unknown, but there is increasing evidence supporting the role of transient α-helices in the early events. Islet amyloid polypeptide (IAPP) is a 37-residue polypeptide that self-assembles into aggregates that are toxic to the insulin-producing β cells. To elucidate early events in the self-assembly of IAPP, we used limited proteolysis to identify an exposed and flexible region in IAPP monomer. This region includes position 20 where a serine-to-glycine substitution (S20G) is associated with enhanced formation of amyloid fibrils and early onset type 2 diabetes. To perform detailed biophysical studies of the exposed and flexible region, we synthesized three peptides including IAPP(11-25)WT (wild type), IAPP(11-25)S20G, and IAPP(11-25)S20P. Solution-state NMR shows that all three peptides transiently populate the α-helical conformational space, but the S20P peptide, which does not self-assemble, transiently samples a broken helix. Under similar sample conditions, the WT and S20G peptides populate the α-helical intermediate state and β-sheet end state, respectively, of fibril formation. Our results suggest a mechanism for self-assembly that includes the stabilization of transient α-helices through the formation of NMR-invisible helical intermediates followed by an α-helix to β-sheet conformational rearrangement. Furthermore, our results suggest that reducing intermolecular helix-helix contacts as in the S20P peptide is an attractive strategy for the design of blockers of peptide self-assembly.  相似文献   

4.
李新松 《高分子科学》2010,28(2):171-179
<正>Zein/chitosan composite fibrous membranes were fabricated from aqueous ethanol solutions by electrospinning. Poly(vinyl pyrrolidone)(PVP) was introduced to facilitate the electrospinning process of zein/chitosan composites.The asspun zein/chitosan/PVP composite fibrous membranes were characterized by scanning electron microscopy(SEM) and tensile tests.SEM images indicated that increasing zein and PVP concentrations led to an increase in average diameters of the composite fibers.In order to improve stability in wet stage and mechanical properties,the composite fibrous membranes were crosslinked by hexamethylene diisocyanate(HDI).The crosslinked composite fibrous membranes showed slight morphological change after immersion in water for 24 h.Mechanical tests revealed that tensile strength and elongation at break of the composite fibrous membranes were increased after crosslinking,whereas Young's modulus was decreased.  相似文献   

5.
Chitosan (CS) nanoparticles coated with zein has been newly demonstrated as a promising encapsulation and delivery system for hydrophilic nutrient with enhanced bioactivities in our previous study. In this study, a hydrophobic nutrient, α-tocopherol (TOC), was successfully encapsulated into zein/CS complex. The fabrication parameters, including zein concentration, zein/CS weight ratio, and TOC loading percentage, were systematically investigated. The physicochemical and structural analysis showed that the electrostatic interactions and hydrogen bonds were major forces responsible for complex formation. The scanning electron microscopy study revealed the spherical nature with smooth surface of complex. TOC encapsulation was also evidenced by differential scanning calorimetry. The particle size and zeta potential of the complex varied from 200 to 800 nm and +22.8 to +40.9 mV, respectively. The kinetic release profile of the TOC showed burst effect followed by slow release. Compared with zein nanoparticles, zein/CS complex provided better protection of TOC release against gastrointestinal conditions, due to CS coatings. Zein/CS complex is believed to be a promising delivery system for supplementation or treatment of hydrophobic nutrients or drugs.  相似文献   

6.
The self-assembly of colloidal nanocrystals has emerged as a powerful strategy for the bottom-up fabrication of functional materials and nanodevices. Recently, the self-assembly of gold nanorods (GNRs) has attracted significant attention because of their unique plasmonic properties, but the realization of their adjustable self-assembly of GNRs through facile and effective approaches remains challenging. In this work, the controllable self-assembly of GNRs in aqueous solution was realized through the host-guest interactions of cyclodextrins (CDs) and the cetyltrimethylammonium bromide (CTAB) molecules adsorbed on the surface of the GNRs. The self-assembly of GNRs was readily achieved by the addition of aqueous α-CD solutions with varied concentrations into aqueous dispersions of CTAB-stabilized GNRs. At a relatively low α-CD concentration, slow aggregation of the GNRs occurred, resulting in their side-by-side assembly. This was revealed by the blue shift of the longitudinal surface plasmon resonance (LSPR) band in the absorption spectra and confirmed by transmission electron microscopy (TEM) observations. On the other hand, when a higher concentration of α-CD was added, fast aggregation of the GNRs occurred, resulting in their end-to-end assembly. This was revealed by the red shift in the LSPR band together with the TEM observations. If β-CD was employed instead of α-CD, the self-assembly of GNRs could also be induced, although a relatively higher concentration of β-CD was required to achieve the extent of aggregation similar to that induced by α-CD, indicating that the supramolecular host–guest interaction between CDs and the surfactant CTAB was crucial to the directed self-assembly of GNRs. Furthermore, the α-CD-induced assembly was inhibited on addition of excess CTAB, confirming that the supramolecular interaction of α-CD and CTAB played a key role in directing the self-assembly of the GNRs. Based on these experimental results, a possible mechanism for the α-CD-induced self-assembly of GNRs was proposed as follows: at a lower α-CD concentration, the gradual formation of the host-guest inclusion complex α-CD/CTAB led to the partial replacement of the highly charged CTAB bilayers adsorbed on the GNRs by the less charged complex, which resulted in a slow side-by-side assembly of the GNRs; at a higher α-CD concentration, the CTAB bilayers were quickly replaced by the α-CD/CTAB complex, and the CTAB molecules adsorbed at both ends of the GNRs were almost completely replaced, resulting in a fast end-to-end assembly of the GNRs. Additionally, on the basis of the hydrolysis of α-cyclodextrin catalyzed by α-amylase, the self-assembly of GNRs directed by the host-guest interaction could be used to realize the feasible detection of α-amylase in solutions. This self-assembly strategy mediated by the host-guest interaction may be extendable to other colloidal systems involving surfactants adsorbed on the surface of nanoparticles, and may open new avenues for the controllable self-assembly of non-spherical nanoparticles.  相似文献   

7.
8.
Four terminally blocked tripeptides containing δ-aminovaleric acid residue self-assemble to form supramolecular β-sheet structures as are revealed from their FT-IR data. Single crystal X-ray diffraction studies of two representative peptides also show that they form parallel β-sheet structures. Self-aggregation of these β-sheet forming peptides leads to the formation of fibrillar structures, as is evident from scanning electron microscopic (SEM) and transmission electron microscopic (TEM) images. These peptide fibrils bind to a physiological dye, Congo red and exhibit a typical green-gold birefringence under polarized light, showing close resemblance to neurodegenerative disease causing amyloid fibrils.  相似文献   

9.
Poly-l-lysine can form either of three different conformers as α-helix, anti-parallel β-sheet and random coil stably under appropriate conditions. In buffer solution poly-l-lysine exists in a random coil at about pH 4, an α-helix above pH 12, and transforms from α-helix to β-sheet when the sample is heated to 46 °C for 30 min. The effects of elevated hydrostatic pressure on three different initial conformers of poly-l-lysine are investigated with Fourier transform infrared spectroscopy and two-dimensional correlation analysis. Changes observed in the amide I′ band indicate that the α-helix conformer undergo hydration enhancement at low pressure (<400 MPa), then gradually transition into an α′-helix. Two initial conformers, the β-sheet and random coiled polypeptide, undergo conformational changes to an α-helix at low pressure and to an α′-helix at high pressure. Moreover, the conversion occurred at a lower pressure for the β-sheet (∼250 MPa) than for the α-helix (∼300 MPa) and the random coil (∼850 MPa).  相似文献   

10.
We describe the self-assembly of A-B-A triblock copolymers in thin films composed of a soft polydimethylsiloxane (PDMS) central block (B) and two polypeptidic (A) blocks, poly(γ-benzyl)-l-glutamate (PBLG). The PBLG segment exhibits depending on the chain length two distinct secondary conformations either a β-sheet or a α-helical conformation. The direct relationship between the surface morphology and the secondary conformation of the polypeptide segment has been evidenced by atomic force microscopy. For chain lengths below 20 U the polypeptide segments adopt preferentially a β-sheet secondary structure and the triblock copolymer self-assembled in fibers. Moreover, the fiber diameters increased with the chain length of the triblock copolymer. For chain lengths above 20, the α-helical structure is stabilized and a lamellar morphology is formed driven by rod-rod interactions in spite of the very asymmetric composition of the triblock copolymer. However, decreasing the film thickness from 25 to 8 nm, i.e., below the L/2 and due to the preferential attraction of the polypeptide block for the hydrophilic substrate employed, instead of a lamellar morphology a rod-like morphology could be found. Thus, the use of hybrid block copolymer containing polypeptides with particular secondary structures offers novel alternatives to control the self-assembly in thin films compared to traditional amorphous block copolymers.  相似文献   

11.
利用相分离工艺制备玉米醇溶蛋白(zein)纳米微球,微球粒径可控制在40 nm左右;经旋转蒸发制得zein溶胶体系,zein溶胶具有明显的丁达尔现象,静置数月不聚沉,Zeta电位法测得zein微球在pH值为4.0时分散性能最佳。 以纳米zein微球为固相稳定剂制备O/W型Pickering乳液,考察了zein胶体加入量、油水体积比等因素对乳液稳定性的影响。 实验结果表明,zein胶体加入量的质量分数控制为0.4%,高油水体积比将有利于Pickering乳液的长时间稳定。 基于zein分子的两亲结构和界面组装特点,提出了zein微球稳定Pickering乳液的作用机制。  相似文献   

12.
Understanding the self-assembly behavior of β-sheet peptides is important, not only in constructing bioactive peptide nanostructures, but also in inhibiting uncontrollable protein aggregation in protein-misfolding diseases. Here, the first systematic investigation of combination self-assembly between β-sheet block copolypeptides and CNTs is presented, demonstrating the presence of several different association modes during the combination self-assembly process. Bioactive β-sheet block copolypeptides can self-assemble by themselves, or can be used to functionalize CNT hybrids depending on the situation. This behavior may be important both for fabricating bioactive peptide/CNT hybrids and for controlling/inhibiting protein-misfolding diseases.  相似文献   

13.
Bombyx mori silk fibroin (SF) is known to be capable of facilitating nucleation of the hydroxyapatite crystals (HAps). To find out how SF mediates the nucleation of HAps, self-assembly of SF in 1.5 simulated body fluid (SBF) was observed in this study through design of a co-solution of SF and 1.5-times SBF (SF/1.5 SBF). After the co-solution of SF/1.5 SBF was incubated at 37.2 °C up to 7 days, SEM, X-ray, and Fourier transform infrared (FTIR) observations indicated that nucleation of HAps was increased. In addition, the structure of SF was transited from random coil into β-sheet indicated by FTIR spectra. The β-sheet assembly of SF in 1.5 SBF was also supported by CD spectra. Atomic force microscopy provided detailed progress of the self-assembly that SF incubated in 1.5 SBF was self-assembled in the form from dot, through rod to final net. Therefore, this study suggested that nucleation of HAps of SF was controlled by its molecular self-assembly. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

14.
There is growing interest in the design of molecules that undergo predictable self-assembly. Bioinspired oligomers with well-defined conformational propensities are attractive from this perspective, since they can be constructed from diverse building blocks, and self-assembly can be directed by the identities and sequence of the subunits. Here we describe the structure of monolayers formed at the air-water interface by amphiphilic α/β-peptides with 1:1 alternation of α- and β-amino acid residues along the backbone. Two of the α/β-peptides, one a dianion and the other a dication, were used to determine differences between self-assemblies of the net negatively and positively charged oligomers. Two additional α/β-peptides, both zwitterionic, were designed to favor assembly in a 1:1 molar ratio mixture with parallel orientation of neighboring strands. Monolayers formed by these α/β-peptides at the air-water interface were characterized by surface pressure-area isotherms, grazing incidence X-ray diffraction (GIXD), atomic force microscopy and ATR-FTIR. GIXD data indicate that the α/β-peptide assemblies exhibited diffraction features similar to those of β-sheet-forming α-peptides. The diffraction data allowed the construction of a detailed model of an antiparallel α/β-peptide sheet with a unique pleated structure. One of the α/β-peptide assemblies displayed high stability, unparalleled among previously studied assemblies of α-peptides. ATR-FTIR data suggest that the 1:1 mixture of zwitterionic α/β-peptides assembled in a parallel arrangement resembling that of a typical parallel β-sheet secondary structure formed by α-peptides. This study establishes guidelines for design of amphiphilic α/β-peptides that assemble in a predictable manner at an air-water interface, with control of interstrand orientation through manipulation of Coulombic interactions along the backbone.  相似文献   

15.
The formation of amyloid fibrils is a self-assembly process of peptides or proteins. The superior mechanical properties of these fibrils make them interesting for materials science but constitute a problem in amyloid-related diseases. Amyloid structures tend to be polymorphic, and their structure depends on growth conditions. To understand and control the assembly process, insights into the relation between the mechanical properties and molecular structure are essential. We prepared long, straight as well as short, worm-like β-lactoglobulin amyloid fibrils and determined their morphology and persistence length by atomic force microscopy (AFM) and the molecular conformation using vibrational sum-frequency generation (VSFG) spectroscopy. We show that long fibrils with near-100% β-sheet content have a 40-times higher persistence length than short, worm-like fibrils with β-sheet contents below 80%.  相似文献   

16.
A novel amphiphilic branched peptide (1), in which three β-sheet formable peptides (L(4)K(8)L(4)) were connected by Lys residue, was newly prepared as a building block for self-assembly. A detailed analysis of the conformation and self-assembling property of 1 in water at various pH conditions was performed by using circular dichroism, FTIR, atomic force and transmission electron microscopies. The experimental results revealed that the branched peptide showed a pH-dependent conformation forming a shape-specific β-sheet-based nanofiber with morphologically kinked structures under specific pH conditions. Exploring a novel peptide building unit that has the ability to self-assemble into designed and complicated nano-objects is valuable to facilitate a bottom-up nanotechnology.  相似文献   

17.
Deciphering the mechanism(s) of β-sheet mediated self-assembly is essential for understanding amyloid fibril formation and for the fabrication of polypeptide materials. Herein, we report a simple peptidomimetic that self-assembles into polymorphic β-sheet quaternary structures including protofilaments, filaments, fibrils, and ribbons that are reminiscent of the highly ordered structures displayed by the amyloidogenic peptides Aβ, calcitonin, and amylin. The distribution of quaternary structures can be controlled by and in some cases specified by manipulating the pH, buffer composition, and the ionic strength. The ability to control β-sheet-mediated assembly takes advantage of quaternary structure dependent pK(a) perturbations. Biophysical methods including analytical ultracentrifugation studies as well as far-UV circular dichroism and FT-IR spectroscopy demonstrate that linked secondary and quaternary structural changes mediate peptidomimetic self-assembly. Electron and atomic force microscopy reveal that peptidomimetic assembly involves numerous quaternary structural intermediates that appear to self-assemble in a convergent fashion affording quaternary structures of increasing complexity. The ability to control the assembly pathway(s) and the final quaternary structure(s) afforded should prove to be particularly useful in deciphering the quaternary structural requirements for amyloid fibril formation and for the construction of noncovalent macromolecular structures.  相似文献   

18.
Metal ions play critical roles in facilitating peptide folding and inducing conformational transitions, thereby impacting on the biological activity of many proteins. However, the effect of metal sites on the hierarchical structures of biopolymers is still poorly understood. Herein, inspired by metalloproteins, we report an order-to-order conformational regulation in synthetic polymers mediated by a variety of metal ions. The copolymers are decorated with clinically available desferrioxamine (DFO) as an exogenous ligand template, which presents a geometric constraint toward peptide backbone via short-range hydrogen bonding interactions, thus dramatically altering the secondary conformations and self-assembly behaviors of polypeptides and allowing for a controllable β-sheet to α-helix transition modulated by metal–ligand interactions. These metallopolymers could form ferritin-inspired hierarchical structures with high stability and membrane activity for efficient brain delivery across the blood–brain barrier (BBB) and long-lasting magnetic resonance imaging (MRI) in vivo.  相似文献   

19.
Zein films plasticized with oleic acid were formed by solution casting, by the stretching of moldable resins, and by blown film extrusion. The effects of the forming process on film structure were investigated by X-ray diffraction. Wide-angle X-ray scattering (WAXS) patterns showed d-spacings at 4.5 and 10 A, which were attributed to the zein alpha-helix backbone and inter-helix packing, respectively. The 4.5 A d-spacing remained stable under processing while the 10 A d-spacing varied with processing treatment. Small-angle X-ray scattering (SAXS) detected a long-range periodicity for the formed films but not for unprocessed zein, which suggests that the forming process-promoted film structure development is possibly aided by oleic acid. The SAXS d-spacing varied among the samples (130-238 A) according to zein origin and film-forming method. X-ray scattering data suggest that the zein molecular structure resists processing but the zein supramolecular arrangements in the formed films are dependent on processing methods. Structural model for a zein molecular aggregate (based on Matsushima et al.10). Rectangular prisms of individual zein molecules are hexagonally aligned parallel to each other.  相似文献   

20.
提出了一种新的酶固定化方法, 即通过甲醇处理, 使蚕丝素蛋白膜的构象由random coil向β-sheet发生根本性的变化, 从而将酶固定在β-sheet所特有的分子间氢键中。利用此方法所制成的脲酶电极, 在合适的操作条件下, 各项响应指标均令人满意, 并且脲酶的耐温性能被大大提高, 电极的有效使用寿命长达三个月以上。此种酶固定化方法原则上能够应用于其他不破坏蚕丝素蛋白分子结构的可溶性酶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号