首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The composite step biconjugate gradient method (CSBCG) is a simple modification of the standard biconjugate gradient algorithm (BCG) which smooths the sometimes erratic convergence of BCG by computing only a subset of the iterates. We show that 2×2 composite steps can cure breakdowns in the biconjugate gradient method caused by (near) singularity of principal submatrices of the tridiagonal matrix generated by the underlying Lanczos process. We also prove a best approximation result for the method. Some numerical illustrations showing the effect of roundoff error are given.The work of this author was supported by the Office of Naval Research under contract N00014-89J-1440.The work of this author was supported by the Office of Naval Research under contracts N00014-90-J-1695 and N00014-92-J-1890, the Department of Energy under, contract DE-FG03-87ER25307, the National Science Foundation under contracts ASC 90-03002 and ASC 92-01266, and the Army Research Office under contract DAAL03-91-G-0150. Part of this work was completed during a visit to the Computer Science Dept. The Chinese University of Hong Kong.  相似文献   

2.
A new zero-one integer programming model for the job shop scheduling problem with minimum makespan criterion is presented. The algorithm consists of two parts: (a) a branch and bound parametric linear programming code for solving the job shop problem with fixed completion time; (b) a problem expanding algorithm for finding the optimal completion time. Computational experience for problems having up to thirty-six operations is presented. The largest problem solved was limited by memory space, not computation time. Efforts are under way to improve the efficiency of the algorithm and to reduce its memory requirements.This report was prepared as part of the activities of the Management Sciences Research Group, Carnegie-Mellon University, under Contract No. N00014-82-K-0329 NR 047-048 with the U.S. Office of Naval Research. Reproduction in whole or in part is permitted for any purpose of the U.S. Government.  相似文献   

3.
A barrier function method for minimax problems   总被引:2,自引:0,他引:2  
This paper presents an algorithm based on barrier functions for solving semi-infinite minimax problems which arise in an engineering design setting. The algorithm bears a resemblance to some of the current interior penalty function methods used to solve constrained minimization problems. Global convergence is proven, and numerical results are reported which show that the algorithm is exceptionally robust, and that its performance is comparable, while its structure is simpler than that of current first-order minimax algorithms.This research was supported by the National Science Foundation grant ECS-8517362, the Air Force Office Scientific Research grant 86-0116, the California State MICRO program, and the United Kingdom Science and Engineering Research Council.  相似文献   

4.
A dynamic factorization algorithm is developed which algebraically partitions the basis inverse in such a manner so that the simplex method can be executed from a series of small inverses and the basis itself. This partition is maintained dynamically so that the additional memory required to represent the basis inverse reduces to this series of small inverses for in-core implementations.The algorithm is intended for use in solving general large-scale linear programming problems. This new method of basis representation should permit rather large problems to be solved completely in-core.Preliminary computational experience is presented and comparisons are made with Reid's sparsity-exploiting variant of the Bartels—Golub decomposition for linear programming bases. The computational experience indicated that a significant reduction in memory requirements can usually be obtained using the dynamic factorization approach with only a slight (up to about 20%) degradation of execution time.This research was supported in part by the Air Force Office of Scientific Research, Air Force System Command, USAF, under AFOSR Contract/Grant Number AFOSR-74-2715.  相似文献   

5.
We consider the problem of minimizing a differentiable function ofn parameters, with upper and lower bounds on the parameters. The motivation for this work comes from the optimization of the design of transient electrical circuits. In such optimization, the parameters are circuit elements, the bound constraints keep these parameters physically meaningful, and both the function and gradient evaluations contain errors. We describe a quasi-Newton algorithm for such problems. This algorithm handles the box constraints directly and approximates the given function locally by nonsingular quadratic functions. Numerical tests indicate that the algorithm can tolerate the errors, if the errors in the function and gradient are of the same relative size.This paper was presented at the SIAM National Meeting, Chicago, Illinois, 1976.This research was sponsored in part by the Air Force Office of Scientific Research (AFSC), United States Air Force, under Contract No. F44620-76-C-0022.  相似文献   

6.
Summary The Kleiser-Schumann algorithm for the approximation of the Stokes problem by Fourier/Legendre polynomials is analized. Stability when the degree of the polynomials increases is established, whereas error estimates in Sobolev spaces are proven.The research of this author has been partially supported by the U.S. Army through its European Research Office under contract No. DAJA-84-C-0035  相似文献   

7.
An algorithm is presented which minimizes continuously differentiable pseudoconvex functions on convex compact sets which are characterized by their support functions. If the function can be minimized exactly on affine sets in a finite number of operations and the constraint set is a polytope, the algorithm has finite convergence. Numerical results are reported which illustrate the performance of the algorithm when applied to a specific search direction problem. The algorithm differs from existing algorithms in that it has proven convergence when applied to any convex compact set, and not just polytopal sets.This research was supported by the National Science Foundation Grant ECS-85-17362, the Air Force Office Scientific Research Grant 86-0116, the Office of Naval Research Contract N00014-86-K-0295, the California State MICRO program, and the Semiconductor Research Corporation Contract SRC-82-11-008.  相似文献   

8.
In Part 1 of this study (Ref. 1), we have defined the implicit complementarity problem and investigated its existence and uniqueness of solution. In the present paper, we establish a convergence theory for a certain iterative algorithm to solve the implicit complementarity problem. We also demonstrate how the algorithm includes as special cases many existing iterative methods for solving a linear complementarity problem.This research was prepared as part of the activities of the Management Sciences Research Group, Carnegie-Mellon University, under Contract No. N00014-75-C-0621-NR-047-048 with the Office of Naval Research.  相似文献   

9.
Latin hypercube sampling is often used to estimate the distribution function of a complicated function of many random variables. In so doing, it is typically necessary to choose a permutation matrix which minimizes the correlation among the cells in the hypercube layout. This problem can be formulated as a generalized, multi-dimensional assignment problem. For the two-dimensional case, we provide a polynomial algorithm. For higher dimensions, we offer effective heuristic and bounding procedures.Supported in part by a grant from the National Institute of Standards and Technology (60NANB9D-0974).Supported in part by grants from the Office of Naval Research (N00014-90-J-1324) and the Air Force Office of Scientific Research (F49 620-90-C-0022).Research partially performed while visiting the Department of Mathematics, Brunel University, Uxbridge, England.  相似文献   

10.
In this paper, we analyze the exponential method of multipliers for convex constrained minimization problems, which operates like the usual Augmented Lagrangian method, except that it uses an exponential penalty function in place of the usual quadratic. We also analyze a dual counterpart, the entropy minimization algorithm, which operates like the proximal minimization algorithm, except that it uses a logarithmic/entropy proximal term in place of a quadratic. We strengthen substantially the available convergence results for these methods, and we derive the convergence rate of these methods when applied to linear programs.Research supported by the National Science Foundation under Grant DDM-8903385, and the Army Research Office under Grant DAAL03-86-K-0171.  相似文献   

11.
Study on a memory gradient method for the minimization of functions   总被引:16,自引:0,他引:16  
A new accelerated gradient method for finding the minimum of a functionf(x) whose variables are unconstrained is investigated. The new algorithm can be stated as follows: where x is the change in the position vectorx, g(x) is the gradient of the functionf(x), and and are scalars chosen at each step so as to yield the greatest decrease in the function. The symbol denotes the change in the position vector for the iteration preceding that under consideration.For a nonquadratic function, initial convergence of the present method is faster than that of the Fletcher-Reeves method because of the extra degree of freedom available. For a test problem, the number of iterations was about 40–50% that of the Fletcher-Reeves method and the computing time about 60–75% that of the Fletcher-Reeves method, using comparable search techniques.This research, supported by the Office of Scientific Research, Office of Aerospace Research, United States Air Force, Grant No. AF-AFOSR-828-67, is a condensed version of the investigation described in Ref. 1. Portions of this paper were presented by the senior author at the International Symposium on Optimization Methods, Nice, France, 1969.  相似文献   

12.
A revised simplex method for linear multiple objective programs   总被引:1,自引:0,他引:1  
For linear multiple-objective problems, a necessary and sufficient condition for a point to be efficient is employed in the development of a revised simplex algorithm for the enumeration of the set of efficient extreme points. Five options within this algorithm were tested on a variety of problems. Results of these tests provide indications for effective use of the algorithm.This work was partially supported by the Office of Naval Research, Contract No. N00014-67-A-0321-0003 (NR047-095).  相似文献   

13.
The Bi-Conjugate Gradient (BCG) algorithm is the simplest and most natural generalization of the classical conjugate gradient method for solving nonsymmetric linear systems. It is well-known that the method suffers from two kinds of breakdowns. The first is due to the breakdown of the underlying Lanczos process and the second is due to the fact that some iterates are not well-defined by the Galerkin condition on the associated Krylov subspaces. In this paper, we derive a simple modification of the BCG algorithm, the Composite Step BCG (CSBCG) algorithm, which is able to compute all the well-defined BCG iterates stably, assuming that the underlying Lanczos process does not break down. The main idea is to skip over a step for which the BCG iterate is not defined.The work of this author was supported by the Office of Naval Research under contract N00014-89J-1440.The work of this author was supported by the Office of Naval Research under contracts N00014-90J-1695 and N00014-92J-1890, the Department of Energy under contract DE-FG03-87ER25307, the National Science Foundation under contracts ASC 90-03002 and 92-01266, and the Army Research Office under contract DAAL03-91-G-0150. Part of this work was completed during a visit to the Computer Science Dept., The Chinese University of Hong Kong.  相似文献   

14.
Summary We present an algorithm which combines standard active set strategies with the gradient projection method for the solution of quadratic programming problems subject to bounds. We show, in particular, that if the quadratic is bounded below on the feasible set then termination occurs at a stationary point in a finite number of iterations. Moreover, if all stationary points are nondegenerate, termination occurs at a local minimizer. A numerical comparison of the algorithm based on the gradient projection algorithm with a standard active set strategy shows that on mildly degenerate problems the gradient projection algorithm requires considerable less iterations and time than the active set strategy. On nondegenerate problems the number of iterations typically decreases by at least a factor of 10. For strongly degenerate problems, the performance of the gradient projection algorithm deteriorates, but it still performs better than the active set method.Work supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research of the U.S. Department of Energy under Contract W-31-109-Eng-38  相似文献   

15.
Projected gradient methods for linearly constrained problems   总被引:23,自引:0,他引:23  
The aim of this paper is to study the convergence properties of the gradient projection method and to apply these results to algorithms for linearly constrained problems. The main convergence result is obtained by defining a projected gradient, and proving that the gradient projection method forces the sequence of projected gradients to zero. A consequence of this result is that if the gradient projection method converges to a nondegenerate point of a linearly constrained problem, then the active and binding constraints are identified in a finite number of iterations. As an application of our theory, we develop quadratic programming algorithms that iteratively explore a subspace defined by the active constraints. These algorithms are able to drop and add many constraints from the active set, and can either compute an accurate minimizer by a direct method, or an approximate minimizer by an iterative method of the conjugate gradient type. Thus, these algorithms are attractive for large scale problems. We show that it is possible to develop a finite terminating quadratic programming algorithm without non-degeneracy assumptions. Work supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research of the U.S. Department of Energy under Contract W-31-109-Eng-38. Work supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research of the U.S. Department of Energy under Contract W-31-109-Eng-38.  相似文献   

16.
In this paper, a unified method to construct quadratically convergent algorithms for function minimization is described. With this unified method, a generalized algorithm is derived. It is shown that all the existing conjugate-gradient algorithms and variable-metric algorithms can be obtained as particular cases. In addition, several new practical algorithms can be generated. The application of these algorithms to quadratic functions as well as nonquadratic functions is discussed.This research, supported by the Office of Scientific Research, Office of Aerospace Research, United States Air Force, Grant No. AF-AFOSR-828-67, is based on Ref. 1.  相似文献   

17.
A proximal-based decomposition method for convex minimization problems   总被引:10,自引:0,他引:10  
This paper presents a decomposition method for solving convex minimization problems. At each iteration, the algorithm computes two proximal steps in the dual variables and one proximal step in the primal variables. We derive this algorithm from Rockafellar's proximal method of multipliers, which involves an augmented Lagrangian with an additional quadratic proximal term. The algorithm preserves the good features of the proximal method of multipliers, with the additional advantage that it leads to a decoupling of the constraints, and is thus suitable for parallel implementation. We allow for computing approximately the proximal minimization steps and we prove that under mild assumptions on the problem's data, the method is globally convergent and at a linear rate. The method is compared with alternating direction type methods and applied to the particular case of minimizing a convex function over a finite intersection of closed convex sets.Corresponding author. Partially supported by Air Force Office of Scientific Research Grant 91-0008 and National Science Foundation Grant DMS-9201297.  相似文献   

18.
In this paper, we propose a decomposition algorithm for convex differentiable minimization. This algorithm at each iteration solves a variational inequality problem obtained by adding to the gradient of the cost function a strongly proximal related function. A line search is then performed in the direction of the solution to this variational inequality (with respect to the original cost). If the constraint set is a Cartesian product ofm sets, the variational inequality decomposes intom coupled variational inequalities, which can be solved in either a Jacobi manner or a Gauss-Seidel manner. This algorithm also applies to the minimization of a strongly convex (possibly nondifferentiable) cost subject to linear constraints. As special cases, we obtain the GP-SOR algorithm of Mangasarian and De Leone, a diagonalization algorithm of Feijoo and Meyer, the coordinate descent method, and the dual gradient method. This algorithm is also closely related to a splitting algorithm of Gabay and a gradient projection algorithm of Goldstein and of Levitin-Poljak, and has interesting applications to separable convex programming and to solving traffic assignment problems.This work was partially supported by the US Army Research Office Contract No. DAAL03-86-K-0171 and by the National Science Foundation Grant No. ECS-85-19058. The author thanks the referees for their many helpful comments, particularly for suggesting the use of a general functionH instead of that given by (4).  相似文献   

19.
An efficient and numerically stable dual algorithm for positive definite quadratic programming is described which takes advantage of the fact that the unconstrained minimum of the objective function can be used as a starting point. Its implementation utilizes the Cholesky and QR factorizations and procedures for updating them. The performance of the dual algorithm is compared against that of primal algorithms when used to solve randomly generated test problems and quadratic programs generated in the course of solving nonlinear programming problems by a successive quadratic programming code (the principal motivation for the development of the algorithm). These computational results indicate that the dual algorithm is superior to primal algorithms when a primal feasible point is not readily available. The algorithm is also compared theoretically to the modified-simplex type dual methods of Lemke and Van de Panne and Whinston and it is illustrated by a numerical example. This research was supported in part by the Army Research Office under Grant No. DAAG 29-77-G-0114 and in part by the National Science Foundation under Grant No. MCS-6006065.  相似文献   

20.
Interest in linear programming has been intensified recently by Karmarkar’s publication in 1984 of an algorithm that is claimed to be much faster than the simplex method for practical problems. We review classical barrier-function methods for nonlinear programming based on applying a logarithmic transformation to inequality constraints. For the special case of linear programming, the transformed problem can be solved by a “projected Newton barrier” method. This method is shown to be equivalent to Karmarkar’s projective method for a particular choice of the barrier parameter. We then present details of a specific barrier algorithm and its practical implementation. Numerical results are given for several non-trivial test problems, and the implications for future developments in linear programming are discussed. The research of the Stanford authors was supported by the U.S. Department of Energy Contract DE-AA03-76SF00326, PA No. DE-AS03-76ER72018; National Science Foundation Grants DCR-8413211 and ECS-8312142; the Office of Naval Research Contract N00014-85-K-0343; and the U.S. Army Research Office Contract DAAG29-84-K-0156. The research of J.A. Tomlin was supported by Ketron, Inc. and the Office of Naval Research Contract N00014-85-C-0338.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号