首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the percolation behavior of the water-in-oil (w/o) droplet phase of AOT (sodium bis[2-ethylhexyl] sulfosuccinate)-based microemulsions with different alkylbenzenes (toluene, ethylbenzene, butylbenzene or octylbenzene) as oil phase. We use microemulsions of varying composition with molar water to surfactant ratios 0≤W≤ 50 and droplet (water plus surfactant) volume fractions 10%≤φ≤50%. Using dielectric spectroscopy, a percolation transition is observed in w/o microemulsions with butylbenzene or octylbenzene. With increasing molecular weight of the alkylbenzene, the percolation temperature T(P) decreases. The structure of the microemulsions is determined by small angle X-ray scattering (SAXS). With increasing molar weight of the alkylbenzene, the stability range of the L(2) droplet phase extends to higher W. The larger amount of solubilizable water can be related to variable oil penetration of the AOT monolayer, which affects the spontaneous curvature of the surfactant shell.  相似文献   

2.
The use of alpha-chymotrypsin to cleave covalently bound N-acetyl- l-tryptophan (Ac-Trp-OH) from the surfaces of aminopropylated controlled pore glass (CPG) and the polymer PEGA 1,900 was investigated. Oligoglycine spacer chains were used to present the covalently attached Ac-Trp-OH substrate to the aqueous enzyme. In the absence of the oligoglycine spacer chain, the rate of release was relatively slow, especially from the PEGA 1,900. These slow rates reflect the position of the amino group to which Ac-Trp-OH is covalently attached. On the glass there was a clear optimum with a chain of four glycine residues. For PEGA 1,900 there is no real apparent change beyond two glycine residues. The decline in rate beyond these optima are a possible result of changes in oligoglycine structure. Comparing different surface loadings of bound substrate the rate of release of Ac-Trp-OH from CPG with a pore diameter of 1,200 A was optimal when using 83% of the maximum that can be coupled, then fell again at higher loading. The rate of Ac-Trp-OH release from CPG was the same for surface coverages of 0.4 and 1.0. The introduction of permanent surface charges on CPG 1,200 exhibits a distinct influence on enzymatic cleavage with an increase in the rate of biocatalysis at the surface. Optimal presentation of covalently immobilized substrate on different supports by use of appropriate linkers leads to favorable biocatalysis from the support.  相似文献   

3.
The influence of chain length and ripening time on the self-assembly of tetradecyl (C(14)), hexadecyl (C(16)), and octadecylamine (C(16)) on mica has been studied by atomic force microscopy. The overall process can be described in three stages characterized by different time scales. First, alkylamine molecules adsorb in a process controlled by water mediated interactions of the NH(2) head groups and mica. Second, surface diffusion and aggregation into islands takes place, driven by energy interactions between alkyl chains. The third stage consists of a progressive tilt of the self-assembled molecules towards the surface, driven by relaxation of the electrostatic repulsion between protonated amino groups due to water uptake from atmosphere.  相似文献   

4.
A tethered ethylenebis(indenyl) zirconocene was covalently immobilized on H-terminated Si(111) surfaces using UV-mediated alkene hydrosilylation, thus making possible the development of structured catalytic surfaces with highly controlled properties.  相似文献   

5.
Molecular orientation of ethylene–vinyl acetate (EVA) copolymer nanofilms adsorbed on chemically controlled surfaces is studied. Four EVA copolymers with different contents of vinyl acetate (VA) were spin‐coated onto gold, COOH and NH2 functionalized substrates in order to study chain behaviour when adsorbed in a quasi‐two‐dimensional system. Polarization‐modulation infrared reflection–absorption spectroscopy (PM‐IRRAS), a very suitable technique to study thin films, was the key to quantitative calculation of EVA chain orientational angles. Acid–base interactions between carbonyl groups of the chain ramification (vinyl acetate units) and the surface functionalities are evidenced on the basis of infrared spectra. Their incidence on the molecular orientation is also discussed. Our results show a quasi‐parallel orientation of EVA main chains with respect to the surface plane for all adsorption substrates. At the same time, orientation changes of the acetate groups are observed when the EVA copolymer is adsorbed onto functionalized substrates, suggesting that acid–base interactions could influence the orientation of these groups. However, these changes are limited and cannot reorient the main chain axis. Moreover, our results show that increasing VA content in the chain does not lead to more carbonyl functions involved in acid–base interactions with the adsorption surface. This fact also will be discussed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
The adsorption and desorption of pyridinium chloride surfactants on borosilicate glass are studied as a function of the separation between two glass-solution interfaces. Both the adsorption and desorption change exponentially with the separation; the decay is equal to the solution Debye length. Changes in adsorption are smaller at pH 1.8 (near the point of zero charge of glass) than at pH 6. These results are consistent with an electrostatic cause for the changes in adsorption. The magnitude of the adsorption regulation, however, depends on the length of the alkyl chain and the surface excess of the surfactant. Therefore, proximal adsorption in this system depends on the coupling between the long-range electrostatic forces and the short-range chain-chain interactions. The equation of state for the surfactant on a regulating surface is discussed with respect to changes in intersurface separation.  相似文献   

7.
Catanionic surfactants formed by the pairing of two ionic amphiphilic chains of opposite charge are now recognized as an important class of amphiphiles. Many aspects of their phase behavior have yet to be explored. In this work, two homologous series of catanionic surfactants were synthesized, based on the cationic headgroups trimethylammonium and pyridinium. Within each series, the headgroup and chain length of the cationic counterpart remains constant while for the anionic counterpart the headgroup is varied, while its alkyl chain length is also kept constant. Thus, one can directly monitor the influence of headgroup chemistry on the thermal behavior of these compounds. Differential scanning calorimetry (DSC) and polarizing light microscopy show that these compounds bear a rich and often complex thermotropic behavior, with the headgroup chemistry in some instances having a rather dramatic influence on phase behavior. Several liquid crystalline phases appear between the solid crystalline phase and the isotropic liquid phase. A qualitative correlation between the observed thermotropic behavior and the chemical nature of headgroup is presented.  相似文献   

8.
Glass transition temperatures have been measured as a function of chain length for amylose acetate, amylose propionate and cellulose carbanilate derivatives using DSC and torsional braid techniques. Critical chain lengths could be predicted if the anhydroglucose ring was treated as a rigid unit in the amylose chain but as a more flexible entity in cellulose. The dependence of Tg on M?1 was not predicted adequately by the Gibbs—DiMarzio theory over the complete molecular weight range. Branching was found to lower the glass transition temperature, but the effect was relatively small.  相似文献   

9.
Solid surfaces are modified by grafting poly(ethylene oxide), PEO, to influence their interaction with indwelling particles, in particular molecules of bovine serum albumin and human plasma proteins. As a rule, the grafted PEO layers suppress protein adsorption. The suppression is most effective when the PEO layer is in a molecular brush conformation having a reciprocal grafting density (area per grafted PEO chain) less than the dimensions of the protein molecules. Nevertheless, the protein molecules may penetrate the PEO brush to some extent. For a given grafting density, the penetration is facilitated by increasing thickness of the brush. Tenuous brushes of reciprocal grafting densities exceeding the protein molecular dimensions enhance protein adsorption. The results point to a weak attractive interaction between PEO and protein. The protein repellency of a densely PEO-brushed surface is ascribed to a high activation energy for the protein molecules to enter the brush. Varying the temperature between 22 and 38 degrees C does not significantly affect the range of grafting density over which the brush changes from protein-attractive to protein-repellent.  相似文献   

10.
Summary In this study, four sodium soaps (laurate, myristate, palmitate and stearate) were examined for comparison by DTA, in the anhydrous state and in presence of water.In the case of anhydrous soaps, it was shown that the existence of a single subwaxy phase and the disappearance of the discs phase are realized when the chain length is as long as C16.For aqueous systems, it was found that drawings of Ti curves in the high temperatures region, and of Tc curves, depend on the chain length, and equally the characteristics of the polymorphic varieties of hemi-hydrates, the complex coagel — mesomorphous phases transition, and the crystallization curves of water.With 17 figures and 3 tables  相似文献   

11.
Quantitative comparison of foam films and the corresponding foams is very demanding. One problem is the fact that investigations of foam films are usually performed at constant capillary pressures P, whereas in foams P is a function of the height of the foam column. A way out of this dilemma is to examine films and foams at the same P. The method of choice for the foam films is the thin film pressure balance (TFPB), whereas the corresponding investigation of foams is based on the foam pressure drop technique (FPDT). An extensive TFPB study on foam films stabilized by the cationic alkyltrimethylammonium bromides C(n)TAB with n=10, 12, 14, and 16 was performed by Bergeron. For this series a steep increase of the foam film stability was observed when the chain length was increased from n=12 to n=14. Moreover, the influence of impurities was found to be limited to the films stabilized by C(12)TAB. In order to study the correlation between the properties of films and foams, the present study deals with the respective foam properties investigated with the FPDT. It was found that both the steep increase in the film stability and the influence of impurities are also reflected in the properties of the foam.  相似文献   

12.
The effects of poly(ethylene glycol) (PEG) chain length of PEG-lipid on the membrane characteristics of liposomes were investigated by differential scanning calorimetry (DSC), freeze-fracture electron microscopy (FFEM), fluorescence polarization measurement and permeability measurement using carboxyfluorescein (CF). PEG-liposomes were prepared from mixtures of dipalmitoyl phosphatidylcholine (DPPC) and distearoyl phosphatidylethanolamines with covalently attached PEG molecular weights of 1000, 2000, 3000 and 5000 (DSPE-PEG). DSC and FFEM results showed that the addition of DSPE-PEG to DPPC in the preparation of liposomes caused the lateral phase separation both in the gel and liquid-crystalline states. The fluidity in the hydrocarbon region of liposomal bilayer membranes was not significantly changed by the addition of DSPE-PEG, while that in the interfacial region was markedly increased. From these results, it was anticipated that the CF leakage from PEG-liposomes is accelerated compared with DPPC liposomes. However, CF leakage from liposomes containing DSPE-PEG with a 0.060 mol fraction was depressed compared with regular liposomes, and the leakage decreased with increasing PEG chain length. Furthermore, the CF leakage from liposomes containing DSPE-PEG with a 0.145 mol fraction was slightly increased compared with that of liposomes containing DSPE-PEG with a 0.060 mol fraction. It is suggested that the solute permeability from the PEG-liposomes was affected by not only properties of the liposomal bilayer membranes such as phase transition temperature, phase separation and membrane fluidity, but also the PEG chain of the liposomal surface.  相似文献   

13.
14.
Thermal diffusion in dilute polymer solutions is studied by reverse nonequilibrium molecular dynamics. The polymers are represented by a generic bead-spring model. The influence of the solvent quality on the Soret coefficient is investigated. At constant temperature and monomer fraction, a better solvent quality causes a higher affinity for the polymer to the cold region. This may even go to thermal-diffusion-induced phase separation. The sign of the Soret coefficient changes in a symmetric nonideal binary Lennard-Jones solution when the solvent quality switches from good to poor. The known independence of the thermal diffusion coefficients of the molecular weight is reproduced for three groups of polymers with different chain stiffnesses. The thermal diffusion coefficients reach constant values at chain lengths of around two to three times the persistence length. Moreover, rigid polymers have higher Soret coefficients and thermal diffusion coefficients than more flexible polymers.  相似文献   

15.
The thermotropic and lyotropic phase behavior of 1- and 5-decyl urea, and 1-, 2-, 4-, and 6-dodecyl urea have been studied. This allowed the effect of positional isomerism to be examined. Intermolecular hydrogen bonding by the urea moiety is the dominant factor in determining the solid-state thermal behavior and crystal solubility boundary of these linear nonionic surfactants. The positional isomers where the urea moiety was not situated at the terminus of the hydrocarbon chain exhibited higher melting points than the 1-alkyl ureas. This has been rationalized by postulating interdigitated chains in the solid state. In the urea surfactant-water systems, three phases are observed, viz. crystalline solid, a dilute aqueous solution of the alkyl urea, and an isotropic liquid. The last two phases coexist in the low-surfactant, high-temperature region of the binary phase diagram. An overview of structure-property correlations for linear nonionic urea surfactants is presented in light of the new physicochemical data obtained for the decyl urea and dodecyl urea positional isomers.  相似文献   

16.
Polydopamine (coded as PDA) is reported to be very adhesive and reactive due to the attached functional groups, such as amine and hydroxyl groups. In this work, taking advantage of the condensation between Si–OH of the hydroxylated alkyltrichlorosilane (ATS) and C–OH on PDA surface, ATS molecules with different chain carbon number of 10, 14 and 18 were grafted onto the 3‐aminopropyl triethoxysilane (APTES)‐PDA dual‐layer film, which was composed of PDA outerlayer and APTES underlayer, on Si substrate. Thus, hydrophobic trilayer films coded as APTES‐PDA‐ATS were prepared successfully. In order to reveal the dependence of the tribological behaviors upon the microstructures of the film, tribological experiments were conducted on an atomic force microscope and a ball‐on‐plate tribometer. Experimental results showed that the (micro‐) friction reducing (characterized by a parameter of relative friction coefficient or friction coefficient, RFC or FC) and macro‐wear resisting (characterized by anti‐wear life) behaviors were related with the chain length of outerlayer and the PDA thickness. Specifically, on one hand, as the chain length increases, RFC/FC decreased and macro anti‐wear life lengthened; on the other hand, as PDA gets thicker, RFC increased and the anti‐wear life enhanced. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Recently, tethered bilayer lipid membranes (tBLMs) have shown high potential as biomimetic systems due to their high stability and electrical properties, and have been used in applications ranging from membrane protein incorporation to biosensors. However, the kinetics of their formation remains largely uninvestigated. By using quartz crystal microbalance with impedance analysis (QCM-Z), we were able to monitor both the kinetics and viscoelastic properties of tether adsorption and vesicle fusion. Formation of the tether monolayer was shown to follow pseudo-first-order Langmuir kinetics with association and dissociation rate constants of 21.7 M-1 s(-1) and 7.43 x 10-6 s(-1), respectively. Moreover, the QCM-Z results indicate a rigid layer at the height of deposition, which then undergoes swelling as indicated by AFM. The deposition of vesicles to the tether layer also followed pseudo-first-order Langmuir kinetics with observed rate constants of 5.58 x 10(-2) and 2.41 x 10-2 s(-1) in water and buffer, respectively. Differential analysis of the QCM-Z data indicated deposition to be the fast kinetic step, with the rate-limiting steps being water release and fusion. Atomic force microscopy pictures taken complement the QCM-Z data, showing the major stages of tether adsorption and vesicle fusion, while providing a road map to successful tBLM formation.  相似文献   

18.
We consider end-grafted chains at an adsorbing surface under good solvent conditions using Monte Carlo simulations and scaling arguments. Grafting of chains allows us to fix the surface concentration and to study a wide range of surface concentrations from the undersaturated state of the surface up to the brushlike regime. The average extension of single chains in the direction parallel and perpendicular to the surface is analyzed using scaling arguments for the two-dimensional semidilute surface state according to Bouchaud and Daoud [J. Phys. (Paris) 48, 1991 (1987)]. We find good agreement with the scaling predictions for the scaling in the direction parallel to the surface and for surface concentrations much below the saturation concentration (dense packing of adsorption blobs). Increasing the grafting density we study the saturation effects and the oversaturation of the adsorption layer. In order to account for the effect of excluded volume on the adsorption free energy we introduce a new scaling variable related with the saturation concentration of the adsorption layer (saturation scaling). We show that the decrease of the single chain order parameter (the fraction of adsorbed monomers on the surface) with increasing concentration, being constant in the ideal semidilute surface state, is properly described by saturation scaling only. Furthermore, the simulation results for the chains' extension from higher surface concentrations up to the oversaturated state support the new scaling approach. The oversaturated state can be understood using a geometrical model which assumes a brushlike layer on top of a saturated adsorption layer. We provide evidence that adsorbed polymer layers are very sensitive to saturation effects, which start to influence the semidilute surface scaling even much below the saturation threshold.  相似文献   

19.
In continuation of our previous investigations on the aqueous phase behavior of cetyltrimethylammonium 2-hydroxy-1-carboxy-naphthoate (CTA-2,1-HCN) (see J. Colloid Interface Sci. 288 (2005) 570), we have studied the phase behavior and the properties of the phases of the two shorter homologues, C(14)TA-2,1-HCN and C(12)TA-2,1-HCN. The phases were prepared from the alkyltrimethylammonium hydroxides RTAOH and the naphtholcarboxylic acid. By preparing the systems in this way the surfactant solutions contain no excess salt. With increasing counter-ion-surfactant ratio r we observed the same sequence of phases as for the previously studied C(16)-system, namely a L(1)-phase and a L(alpha)-phase with multilamellar vesicles (MLV). The single phases are separated by a two-phase L(1)/L(alpha) region. The phases were characterized with FF-TEM, rheological and SANS measurements. For both systems the viscosity of the L(1)-phases passes with increasing counter-ion/surfactant ratio over a maximum. The height of the maximum decreases strongly with decreasing chain length while the complex viscosity of the MLV-phase depends little on the chain length. For 100 mM solution both MLV phases behave like a weak gel and have a yield stress value. It is thus shown that it is possible to prepare viscoelastic surfactant solutions with a yield stress value from single chain surfactants with a dodecyl chain.  相似文献   

20.
The synthesis and thermotropic properties of four homologous series of salicylaldimine-based dimer liquid crystals are reported. Two 4-(4-alkoxy-2-hydroxybenzylideneamino)benzoyloxy groups are connected to a central part consisting of a 1,3-phenylene, 1,5-pentylene, 2,2-dimethyl-1,5-pentylene or 3,3-dimethyl-1,5-pentylene unit. The terminal alkoxy chains have been varied from 4 to 16 carbon atoms in length. All the compounds exhibit liquid crystalline phases whose behaviour depends on the nature of the central part and the length of the alkoxy terminal chains. All compounds of the series with the central phenyl part exhibit enantiotropic B-phases, and the sequence B6-B1-B2 on increasing terminal chain length was observed. Replacement of the phenyl group with a pentyl central group partly suppresses the formation of B-phases. The longer homologues of this series show the B1 phase, while the shorter exhibit an intercalated SmCc mesophase. The introduction of methyl substituents to the pentyl spacer causes the melting points to fall dramatically and the formation of B-phases is totally suppressed. The compounds with the long tails show intercalated SmAc phases and those with short tails show intercalated SmCc phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号