首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 348 毫秒
1.
There is considerable current interest in the development of constitutive equations for pressure-dependent plastic materials. In particular, in contrast to classical plasticity there is no commonly accepted relation to connect stress and strain or strain rate for such materials. Analytic and semi-analytic solutions are convenient to compare qualitative features of boundary value problems solved for different models. Such comparative studies can be useful to choose this or that model for specific applications. Analytic and semi-analytic solutions are also necessary to verify numerical codes. In the present paper, a new semi-analytic solution for a thin hollow disc subject to thermal loading is developed. A numerical method is only necessary to solve transcendental equations. The constitutive equations for connecting the plastic portion of the strain rate tensor and the stress tensor consist of the Drucker-Prager yield criterion and its associated flow rule. Therefore, the main distinguished feature of the solution is that the material is plastically compressible.  相似文献   

2.
Energy-type kinetic equations of inelastic rheological deformation are proposed in which the elastic, plastic, and creep strains are the additive components of the total strain, and the damage parameter is taken into account. A model of viscoelastic material with a creep kernel of exponential type is considered. The Lyapunov stability of solutions under constant stress is studied. The stability range of the solutions of the differential equations of the mathematical model corresponding to asymptotically bounded creep is established. It is shown that the instability range of the solutions corresponds to the onset of the third stage of creep. The relationship is determined between the Lyapunov stability of the solutions and the stability of the computational algorithm for the numerical solution of the system of equations. The proposed model is experimentally verified. It is shown that the calculated and experimental data are in good agreement.  相似文献   

3.
The method for constructing approximate solutions of boundary value problems of impact strain dynamics in the form of ray expansions behind the strain discontinuity fronts is generalized to the case of curvilinear and diverging rays. This proposed generalization is illustrated by an example of dynamics of an antiplane motion of an elastic medium. The ray method is one of the methods for constructing approximate solutions of nonstationary boundary value problems of strain dynamics. It was proposed in [1, 2] and then widely used in nonstationary problems of mathematical physics involving surfaces on which the desired function or its derivatives have discontinuities [3–7]. A complete, qualified survey of papers in this direction can be found in [8]. This method is based on the expansion of the solution in a Taylor-type series behind the moving discontinuity surface rather than in a neighborhood of a stationary point. The coefficients of this series are the jumps of the derivatives of the unknown functions, for which, as a consequence of the compatibility conditions, one can obtain ordinary differential equations, i.e., discontinuity damping equations. In the case where the problem with velocity discontinuity surfaces is considered in a nonlinear medium, this method cannot be used directly, because one cannot obtain the damping equation. A modification of this method for the purpose of using it to solve problems of that type was proposed in [9–11], where, as an example, the solutions of several one-dimensional problems were considered. In the present paper, we show how this method can be transferred to the case of multidimensional impact strain problems in which the geometry of the ray is not known in advance and the rays become curvilinear and diverging. By way of example, we consider a simple problem on the antiplane motion of a nonlinearly elastic incompressible medium.  相似文献   

4.
The logarithmic or Hencky strain measure is a favored measure of strain due to its remarkable properties in large deformation problems. Compared with other strain measures, e.g., the commonly used Green-Lagrange measure, logarithmic strain is a more physical measure of strain. In this paper, we present a Hencky-based phenomenological finite strain kinematic hardening, non-associated constitutive model, developed within the framework of irreversible thermodynamics with internal variables. The derivation is based on the multiplicative decomposition of the deformation gradient into elastic and inelastic parts, and on the use of the isotropic property of the Helmholtz strain energy function. We also use the fact that the corotational rate of the Eulerian Hencky strain associated with the so-called logarithmic spin is equal to the strain rate tensor (symmetric part of the velocity gradient tensor). Satisfying the second law of thermodynamics in the Clausius-Duhem inequality form, we derive a thermodynamically-consistent constitutive model in a Lagrangian form. In comparison with the available finite strain models in which the unsymmetric Mandel stress appears in the equations, the proposed constitutive model includes only symmetric variables. Introducing a logarithmic mapping, we also present an appropriate form of the proposed constitutive equations in the time-discrete frame. We then apply the developed constitutive model to shape memory alloys and propose a well-defined, non-singular definition for model variables. In addition, we present a nucleation-completion condition in constructing the solution algorithm. We finally solve several boundary value problems to demonstrate the proposed model features as well as the numerical counterpart capabilities.  相似文献   

5.
An approximate solution to the problem of compression of an infinite layer of material between rough parallel plates is constructed with the creep equations being fulfilled. Constitutive relations in accordance with which the equivalent stress tends to a finite value as the equivalent strain rate tends to infinity are used. The behavior of the solution in the neighborhood of the maximum friction surface is studied. It is shown that the existence of the solution depends on one of the parameters included in the constitutive equations. If the solution exists, the equivalent strain rate tends to infinity in the neighborhood of the maximum friction surface, and the asymptotic behavior of the solution depends on the same parameter. It is established that there is a range of this parameter in which the nature of the change in the equivalent strain rate near the maximum friction surface is the same as in the solutions for rigid plastic materials.  相似文献   

6.
An approximate solution describing the compression of an axisymmetric layer ofmaterial on a rigid mandrel under the equations of the creep theory is constructed. The constitutive equation is introduced so that the equivalent stress tends to a finite value as the equivalent strain rate tends to infinity. Such a constitutive equation leads to a qualitatively different asymptotic behavior of the solution near the mandrel surface, on which the maximum friction law is satisfied, compared with the well-known solution for the creep model based on the power-law relationship between the equivalent stress and the equivalent strain rate. It is shown that the solution existence depends on the value of one of the parameters contained in the constitutive equations. If the solution exists, then the equivalent strain rate tends to infinity as the maximum friction surface is approached, and the qualitative asymptotic behavior of the solution depends on the value of the same parameter. There is a range of variation of this parameter for which the qualitative behavior of the equivalent strain rate near the maximum friction surface coincides with the behavior of the same variable in ideally rigid-plastic solutions.  相似文献   

7.
Kink-bands in rocks have been widely observed in nature and imitated in the laboratory, and the mechanism of their formation has attracted much attention from various researchers for many years. In this paper, a two-phase equilibrium model is presented in which the kink-bands are considered as a high-strain phase and the other regions outside kink-bands as a low-strain phase and the discontinuity of the deformation gradient and stresses is permitted across the interface between those two phases. Based on the present model, we conduct the analysis for the rocks under plane strain compression by finding the minimum value of the compressive loading at which the governing equations have real, physically acceptable solutions. It is revealed that for the rocks with strain-softening behaviour, two-phase equilibrium solutions exist, and the critical value of the compressive loading, the inclination angle of the kink-band, and the stresses and strains inside and outside kink-bands can all be determined by the solution, which are in good agreement with experimental measurements and observations.  相似文献   

8.
We study the impact of the convective terms on the global solvability or finite time blow up of solutions of dissipative PDEs. We consider the model examples of 1D Burger’s type equations, convective Cahn–Hilliard equation, generalized Kuramoto–Sivashinsky equation and KdV type equations. The following common scenario is established: adding sufficiently strong (in comparison with the destabilizing nonlinearity) convective terms to equation prevents the solutions from blowing up in a finite time and makes the considered system globally well-posed and dissipative and for weak enough convective terms the finite time blow up may occur similar to the case, when the equation does not involve convective term. This kind of result has been previously known for the case of Burger’s type equations and has been strongly based on maximum principle. In contrast to this, our results are based on the weighted energy estimates which do not require the maximum principle for the considered problem.  相似文献   

9.
This work is the continuation and the distillation of the discussion of Refs. [1-4].(A)From complementarity principle we build up dissipation mechanics in this paper.It is a dissipative theory of correspondence with the quantum mechanics.From this theorywe can unitedly handle problems of macroscopic non-equilibrium thermodynamics andviscous hydrodynamics. and handle each dissipative and irreversible problems in quantummechanics.We prove the basic equations of dissipation mechanics to eigenvalues equationsof correspondence with the Schr(?)dinger equation or Dirac equation in this paper.(B)We unitedly merge the basic nonlinear equations of dissipative type, especially theNavier-Stokes equation as a basic equation for macroscopic non-equilibrium ther-modynamics and viscous hydrodynamics into integrability condition of basic equation ofdissipation mechanics. And we can obtain their exact solutions by the inverse scatteringmethod in this paper.  相似文献   

10.
We study three-dimensional Khokhlov–Zabolotskaya–Kuznetsov (KZK) model of the nonlinear hydroacoustics with dissipation. This model is described by third order quasilinear partial differential equation of the (KZK). We obtained that the (KZK) equation admits an infinite Lie group of the transformations, depending on the three arbitrary functions. This is due to the fact that in the (KZK) model the main direction of the wave’s propagation is singled out. The submodels of the (KZK) model.are described by the invariant solutions of the (KZK) equation. We studied essentially distinct, not linked by means of the point transformations, invariant solutions of rank 0 and 1 of this equation. Also we considered the invariant solutions of rank 2 and 3. The invariant solutions of rank 0 and 1 are found either explicitly, or their search is reduced to the solution of the nonlinear integro-differential equations. For example, we obtained the invariant solutions that we called by “Ultrasonic knife” and “Ultrasonic destroyer”. The submodel “Ultrasonic knife” have the following property: at each fixed moment of the time in the field of the existence of the solution near a some plane the pressure increases indefinitely and becomes infinite on this plane. The submodel “Ultrasonic destroyer” contains a countable number of “Ultrasonic knives”. The presence of the arbitrary constants in the integro-differential equations, that determine invariant solutions of rank 1 provides a new opportunities for analytical and numerical study of the boundary value problems for the received submodels, and, thus, for the original (KZK) model. With a help of these invariant solutions we researched a propagation of the intensive acoustic waves (one-dimensional, axisymmetric and planar) for which the acoustic pressure, speed and acceleration of its change, or the acoustic pressure , speed and acceleration of its change in the radial direction, or the acoustic pressure, speed and acceleration of its change in the direction of one of the axes are specified at the initial moment of the time at a fixed point. Under the certain additional conditions, we established the existence and the uniqueness of the solutions of boundary value problems, describing these wave processes. Mechanical relevance of the obtained solutions is as follows: (1) these solutions describe nonlinear and diffraction effects in ultrasonic fields of a special kind, (2) these solutions can be used as a test solutions in the numerical calculations performed in studies of ultrasonic fields generated by powerful emitters. Application of the obtained formula generating the new solutions for the found solutions gives families of the solutions containing three arbitrary functions.  相似文献   

11.
脆性固体中内聚断裂点阵列的扩张行为及间隔影响   总被引:1,自引:1,他引:0  
周风华  王礼立 《力学学报》2010,42(4):691-701
建立一个一维模型, 分析脆性材料中多个等间距虚拟断裂点在均匀应变率拉伸作用下的扩张断裂过程. 采用线弹性波动方程组描述材料内部动力学关系, 采用线性内聚力断裂模型(linear cohesive fracture model)描述虚拟断裂点的扩张行为, 根据初始均匀拉伸条件和虚拟裂纹等间距假设给出定解条件, 形成一个初边值问题. 采用Laplace变换方法求解控制方程组, 得到虚拟断裂点扩张过程中内聚应力随时间变化曲线, 以及发生完全断裂的临界时间和单位裂纹体(碎片)的临界膨胀位移. 在此基础上分析应变率和裂纹间距对碎裂发生时间及单元裂纹体临界膨胀位移的影响. 在假设脆性材料在自然碎裂过程中单元裂纹体临界膨胀位移最小的基础上,进一步研究应变率对碎片尺度的影响.   相似文献   

12.
In three recent papers [6–8], the present authors show that both plane strain and axially symmetric deformations of perfectly elastic incompressible Varga materials admit certain first integrals, which means that solutions for finite elastic deformations can be determined from a second order partial differential equation, rather than a fourth order one. For plane strain deformations there are three such integrals, while for axially symmetric deformations there are two. The purpose of the present papers is to present the general equations for small deformations which are superimposed upon a large deformation, which is assumed to satisfy one of the previously obtained first integrals. The governing partial differential equations for the small superimposed deformations are linear but highly nonhomogeneous, and we present here the precise structure of these equations in terms of a second-order linear differential operator D2, which is first defined by examining solutions of the known integrals. The results obtained are illustrated with reference to a number of specific large deformations which are known solutions of the first integrals. For deformations of limited magnitude, the Varga strain-energy function has been established as a reasonable prototype for both natural rubber vulcanizates and styrene-butadiene vulcanizates. Plane strain deformations are examined in this present part while axially symmetric deformations are considered in Part II [16]. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
We study the model, describing a nonlinear diffusion process (or a heat propagation process) in an inhomogeneous medium with non-stationary absorption (or source). We found tree submodels of the original model of the nonlinear diffusion process (or the heat propagation process), having different symmetry properties. We found all invariant submodels. All essentially distinct invariant solutions describing these invariant submodels are found either explicitly, or their search is reduced to the solution of the nonlinear integral equations. For example, we obtained the invariant solution describing the nonlinear diffusion process (or the heat distribution process) with two fixed "black holes", and the invariant solution describing the nonlinear diffusion process (or the heat distribution process) with the fixed "black hole" and the moving "black hole". The presence of the arbitrary constants in the integral equations, that determine these solutions provides a new opportunities for analytical and numerical study of the boundary value problems for the received submodels, and, thus, for the original model of the nonlinear diffusion process (or the heat distribution process). For the received invariant submodels we are studied diffusion processes (or heat distribution process) for which at the initial moment of the time at a fixed point are specified or a concentration (a temperature) and its gradient, or a concentration (a temperature) and its rate of change. Solving of boundary value problems describing these processes are reduced to the solving of nonlinear integral equations. We are established the existence and uniqueness of solutions of these boundary value problems under some additional conditions. The obtained results can be used to study the diffusion of substances, diffusion of conduction electrons and other particles, diffusion of physical fields, propagation of heat in inhomogeneous medium.  相似文献   

14.
Ze-Ping Wang  C. T. Sun   《Wave Motion》2002,36(4):473-485
A continuum model including micro-inertia for heterogeneous materials under dynamic loading is proposed using a micro-mechanics method. The macro strain and stress are defined as the volume averages of the strain and stress fields in the representative volume element (RVE). The macro equations of motion are derived by using Hamilton’s principle together with the strain energy density and kinetic energy density involving the micro-inertia terms. The new macro equations of motion are used to study harmonic and transient wave propagation in layered media. Using a simple linear displacement field for the RVE, the dispersion curves obtained from the present model agree with the exact solutions very well for a range of wavelengths. The present model is also applied to analyze the transient response of layered media subjected to a triangular pulse loading. Comparison is made between the results of the present model and a finite element analysis.  相似文献   

15.
We study three-dimensional Westervelt model of nonlinear hydroacoustics with dissipation. We received all its invariant submodels. With the help of invariant solutions, we explored some wave processes, specifying their physical meaning. The boundary value problems describing these processes are reduced to the nonlinear integro-differential equations. We established the existence and uniqueness of the solutions of these boundary value problems under some additional conditions. Also we considered the invariant solutions of rank 2 and 3. Mechanical relevance of the obtained solutions is as follows: (1) these solutions describe nonlinear and diffraction effects in ultrasonic fields of a special kind, (2) these solutions can be used as a test solutions in the numerical calculations performed in studies of ultrasonic fields generated by powerful emitters.  相似文献   

16.
A method for analyzing the creep strain and its dependence on the stress, temperature, and time have been considered in many publications (e.g., see [1?C3]), where the corresponding references can be found. The present paper describes an investigation of several functional equations satisfied by the functions describing the time-dependence of the strain. Several solutions of the functional equations are given.  相似文献   

17.
Periodic wave solutions in a film of viscous liquid near optimal regimes have been investigated in the boundary layer approximation by Shkadov et al. [1]. Urintsev [2] has found nonlinear steady solutions near the upper neutral stability curve on the basis of the Navier-Stokes equations. In the present paper, equations are derived that can be used either to make the boundary-layer solution more accurate or estimate its applicability. Soliton type solutions are considered for parameter of the problem in the range δ ε (0, ∞). Asymptotic expansions are considered in the limits δ → 0 and δ → ∞. For finite δ, two numerical algorithms are proposed for solving the problem; one of them is for equations in von Mises variables. The numerical solutions revealed the existence of “singular” sections, at which the velocity profile differs strongly from parabolic. The integral characteristics of the soliton — the phase velocity, amplitude, etc. — are found to be close to the corresponding characteristics obtained earlier by the present author [3] by assuming that the velocity profile is parabolic. The first determination is made of the critical value δ = δ** of the onset of boundary layer separation in the vertically flowing viscous film. It is interesting that the separation does not occur on the rigid wall but at an interface near the crest of the soliton.  相似文献   

18.
In part I of this paper, we consider the governing equations of hypoplasticity theory for two-dimensional steady quasi-static plane strain compressible gravity flow and determine some exact analytical solutions applying for certain special cases. Similarly, for the three-dimensional situation considered here in part II, we undertake a similar mathematical investigation to determine some simple solutions of the governing equations for three-dimensional steady quasi-static axially symmetric compressible gravity flow for hypoplastic granular materials. We again find that for certain special cases, we are able to determine some exact solutions for the stress and velocity profiles. We comment that hypoplasticity theory generally gives rise to complicated systems of coupled non-linear differential equations, for which the determination of any analytical solutions is not a trivial matter, and that the solutions determined here might be exploited as benchmarks for full numerical schemes.  相似文献   

19.
20.
For some models of rigid-plastic bodies, the strain rate fields turn out to be singular near the maximum friction surfaces. In particular, the equivalent strain rate (the second invariant of the strain rate tensor) tends to infinity when approaching such frictions surfaces. The coefficient multiplying the leading singular term in the series expansion of the equivalent strain rate near the maximum friction surfaces is called the strain rate intensity factor. This coefficient occurs in several models predicting the development of intensive plastic deformation layers near friction surfaces and in equations describing the change in the material structure in such layers. In the present paper, the solution is constructed for the compression of a layer of a plastic material obeying the double shear model between cylindrical surfaces on each of which the maximum friction law holds. The dependence of two strain rate intensity factors on the material and process parameters is calculated and analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号