首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A subgroup $H$ of a finite group $G$ is weakly-supplemented in $G$ if there exists a proper subgroup $K$ of $G$ such that $G=HK$ . In this paper we prove that a finite group $G$ is $p$ -nilpotent if every minimal subgroup of $P\bigcap G^{N}$ is weakly-supplemented in $G$ , and when $p=2$ either every cyclic subgroup of $P\bigcap G^{N}$ with order 4 is weakly-supplemented in $G$ or $P$ is quaternion-free, where $p$ is the smallest prime number dividing the order of $G$ , $P$ a sylow $p$ -subgroup of $G$ .  相似文献   

2.
A subgroup $A$ of a finite group $G$ is said to be $S$ -permutably embedded in $G$ if for each prime $p$ dividing the order of $A$ , every Sylow $p$ -subgroup of $A$ is a Sylow $p$ -subgroup of some $S$ -permutable subgroup of $G$ . In this paper we determine how the $S$ -permutable embedding of several families of subgroups of a finite group influences its structure.  相似文献   

3.
Let $G$ be a compact Lie group, $H$ a closed subgroup of maximal rank and $X$ a topological $G$ -space. We obtain a variety of results concerning the structure of the $H$ -equivariant K-ring $K_H^*(X)$ viewed as a module over the $G$ -equivariant K-ring $K_G^*(X)$ . One result is that the module has a nonsingular bilinear pairing; another is that the module contains multiplets which are analogous to the Gross–Kostant–Ramond–Sternberg multiplets of representation theory.  相似文献   

4.
We prove that a finitely generated pro- $p$ group acting on a pro- $p$ tree $T$ with procyclic edge stabilizers is the fundamental pro- $p$ group of a finite graph of pro- $p$ groups with vertex groups being stabilizers of certain vertices of $T$ and edge groups (when non-trivial) being stabilizers of certain edges of $T$ , in the following two situations: (1) the action is $n$ -acylindrical, i.e., any non-identity element fixes not more than $n$ edges; (2) the group $G$ is generated by its vertex stabilizers. This theorem is applied to obtain several results about pro- $p$ groups from the class $\mathcal L $ defined and studied in Kochloukova and Zalesskii (Math Z 267:109–128, 2011) as pro- $p$ analogues of limit groups. We prove that every pro- $p$ group $G$ from the class $\mathcal L $ is the fundamental pro- $p$ group of a finite graph of pro- $p$ groups with infinite procyclic or trivial edge groups and finitely generated vertex groups; moreover, all non-abelian vertex groups are from the class $\mathcal L $ of lower level than $G$ with respect to the natural hierarchy. This allows us to give an affirmative answer to questions 9.1 and 9.3 in Kochloukova and Zalesskii (Math Z 267:109–128, 2011). Namely, we prove that a group $G$ from the class $\mathcal L $ has Euler–Poincaré characteristic zero if and only if it is abelian, and if every abelian pro- $p$ subgroup of $G$ is procyclic and $G$ itself is not procyclic, then $\mathrm{def}(G)\ge 2$ . Moreover, we prove that $G$ satisfies the Greenberg–Stallings property and any finitely generated non-abelian subgroup of $G$ has finite index in its commensurator.  相似文献   

5.
Given a finite group $G$ and a subgroup $H\le G$ , we develop a Fourier analysis for $H$ -conjugacy invariant functions on $G$ , without the assumption that $H$ is a multiplicity-free subgroup of $G$ . We also study the Fourier transform for functions in the center of the algebra of $H$ -conjugacy invariant functions on $G$ . We show that a recent calculation of Cesi is indeed a Fourier transform of a function in the center of the algebra of functions on the symmetric group that are conjugacy invariant with respect to a Young subgroup.  相似文献   

6.
For a group $G$ , denote by $\omega (G)$ the number of conjugacy classes of normalizers of subgroups of $G$ . Clearly, $\omega (G)=1$ if and only if $G$ is a Dedekind group. Hence if $G$ is a 2-group, then $G$ is nilpotent of class $\le 2$ and if $G$ is a $p$ -group, $p>2$ , then $G$ is abelian. We prove a generalization of this. Let $G$ be a finite $p$ -group with $\omega (G)\le p+1$ . If $p=2$ , then $G$ is of class $\le 3$ ; if $p>2$ , then $G$ is of class $\le 2$ .  相似文献   

7.
Let $G$ be a finite group. A subgroup $H$ of $G$ is called an $\mathcal{H }$ -subgroup of $G$ if $N_G(H)\cap H^g\le H$ for all $g\in G$ . A group $G$ is said to be an ${\mathcal{H }}_p$ -group if every cyclic subgroup of $G$ of prime order or order 4 is an $\mathcal{H }$ -subgroup of $G$ . In this paper, the structure of a finite group all of whose second maximal subgroups are ${\mathcal{H }}_p$ -subgroups has been characterized.  相似文献   

8.
A subgroup $H$ of a group $G$ is called $\mathbb{P }$ -subnormal in $G$ whenever either $H=G$ or there is a chain of subgroups $H=H_0\subset H_1\subset \cdots \subset H_n=G$ such that $|H_i:H_{i-1}|$  is a prime for all $i$ . In this paper we study groups with $\mathbb{P }$ -subnormal 2-maximal subgroups, and groups with $\mathbb{P }$ -subnormal primary cyclic subgroups.  相似文献   

9.
Let $G$ be a finite $p$ -solvable group for some prime $p$ and suppose that the set of $p$ -regular conjugacy class sizes is $\{1, m, mn\}$ with $(m, n)=1$ and $m$ coprime to $p$ . We show that $m=q^b$ for some prime $q$ and we describe the structure of the $p$ -complements of $G$ .  相似文献   

10.
For a finite $p$ -group $G$ and a bounded below $G$ -spectrum $X$ of finite type mod  $p$ , the $G$ -equivariant Segal conjecture for $X$ asserts that the canonical map $X^G \rightarrow X^{hG}$ , from $G$ -fixed points to $G$ -homotopy fixed points, is a $p$ -adic equivalence. Let $C_{p^n}$ be the cyclic group of order  $p^n$ . We show that if the $C_p$ -equivariant Segal conjecture holds for a $C_{p^n}$ -spectrum $X$ , as well as for each of its geometric fixed point spectra $\varPhi ^{C_{p^e}}(X)$ for $0 < e < n$ , then the $C_{p^n}$ -equivariant Segal conjecture holds for  $X$ . Similar results also hold for weaker forms of the Segal conjecture, asking only that the canonical map induces an equivalence in sufficiently high degrees, on homotopy groups with suitable finite coefficients.  相似文献   

11.
Let $r$ be a prime and $G$ be a finite group, and let $R, \,S$ be Sylow $r$ -subgroups of $G$ and $\text{ PGL }(2, r)$ respectively. We prove the following results: (1) If $|G|=|\text{ PGL }(2, r)|$ and $|N_{G}(R)|=|N_{\mathrm{PGL}(2, r)} (S)|$ and $r$ is not a Mersenne prime, then $G$ is isomorphic to $\text{ PSL } (2, r) \times C_{2}, \,\text{ SL }(2, r)$ or $\text{ PGL }(2, r)$ . (2) If $|G|=|\text{ PGL }(2, r)|, \,|N_{G}(R)|=|N_{\mathrm{PGL}(2, r)}(S)|$ where $r>3$ is a Mersenne prime and $r$ is an isolated vertex of the prime graph of $G$ , then $G\cong \text{ PGL }(2, r)$ .  相似文献   

12.
Let $(B,\mathcal{M }_B)$ be a noetherian regular local ring of dimension $2$ with residue field $B/\mathcal{M }_B$ of characteristic $p>0$ . Assume that $B$ is endowed with an action of a finite cyclic group $H$ whose order is divisible by $p$ . Associated with a resolution of singularities of $\mathrm{Spec}B^H$ is a resolution graph $G$ and an intersection matrix $N$ . We prove in this article three structural properties of wild quotient singularities, which suggest that in general, one should expect when $H= \mathbb{Z }/p\mathbb{Z }$ that the graph $G$ is a tree, that the Smith group $\mathbb{Z }^n/\mathrm{Im}(N)$ is killed by $p$ , and that the fundamental cycle $Z$ has self-intersection $|Z^2|\le p$ . We undertake a combinatorial study of intersection matrices $N$ with a view towards the explicit determination of the invariants $\mathbb{Z }^n/\mathrm{Im}(N)$ and $Z$ . We also exhibit explicitly the resolution graphs of an infinite set of wild $\mathbb{Z }/2\mathbb{Z }$ -singularities, using some results on elliptic curves with potentially good ordinary reduction which could be of independent interest.  相似文献   

13.
Given non-negative integers $r, s,$ and $t,$ an $[r,s,t]$ -coloring of a graph $G = (V(G),E(G))$ is a mapping $c$ from $V(G) \cup E(G)$ to the color set $\{1,\ldots ,k\}$ such that $\left|c(v_i) - c(v_j)\right| \ge r$ for every two adjacent vertices $v_i,v_j, \left|c({e_i}) - c(e_j)\right| \ge s$ for every two adjacent edges $e_i,e_j,$ and $\left|c(v_i) - c(e_j)\right| \ge t$ for all pairs of incident vertices and edges, respectively. The $[r,s,t]$ -chromatic number $\chi _{r,s,t}(G)$ of $G$ is defined to be the minimum $k$ such that $G$ admits an $[r,s,t]$ -coloring. In this note we examine $\chi _{1,1,t}(K_p)$ for complete graphs $K_p.$ We prove, among others, that $\chi _{1,1,t}(K_p)$ is equal to $p+t-2+\min \{p,t\}$ whenever $t \ge \left\lfloor {\frac{p}{2}}\right\rfloor -1,$ but is strictly larger if $p$ is even and sufficiently large with respect to $t.$ Moreover, as $p \rightarrow \infty $ and $t=t(p),$ we asymptotically have $\chi _{1,1,t}(K_p)=p+o(p)$ if and only if $t=o(p).$   相似文献   

14.
We present several examples of feebly compact Hausdorff paratopological groups (i.e., groups with continuous multiplication) which provide answers to a number of questions posed in the literature. It turns out that a 2-pseudocompact, feebly compact Hausdorff paratopological group $G$ can fail to be a topological group. Our group $G$ has the Baire property, is Fréchet–Urysohn, but it is not precompact. It is well known that every infinite pseudocompact topological group contains a countable non-closed subset. We construct an infinite feebly compact Hausdorff paratopological group $G$ all countable subsets of which are closed. Another peculiarity of the group $G$ is that it contains a nonempty open subsemigroup $C$ such that $C^{-1}$ is closed and discrete, i.e., the inversion in $G$ is extremely discontinuous. We also prove that for every continuous real-valued function $g$ on a feebly compact paratopological group $G$ , one can find a continuous homomorphism $\varphi $ of $G$ onto a second countable Hausdorff topological group $H$ and a continuous real-valued function $h$ on $H$ such that $g=h\circ \varphi $ . In particular, every feebly compact paratopological group is $\mathbb{R }_3$ -factorizable. This generalizes a theorem of Comfort and Ross established in 1966 for real-valued functions on pseudocompact topological groups.  相似文献   

15.
16.
A finite group $G$ has no non-trivial rational-valued irreducible $p$ -Brauer characters if and only if $G$ has no non-trivial rational elements of order not divisible by $p$ .  相似文献   

17.
Let $p$ be the smallest prime divisor of the order of a finite group $G$ . We examine the structure of $G$ under the hypothesis that $p$ -subgroups of $G$ of certain orders are complemented in $G$ . In particular, we extend some recent results.  相似文献   

18.
We investigate the vanishing of the group $SK_1(\Lambda (G))$ for the Iwasawa algebra $\Lambda (G)$ of a pro- $p$ $p$ -adic Lie group $G$ (with $p \ne 2$ ). We reduce this vanishing to a linear algebra problem for Lie algebras over arbitrary rings, which we solve for Chevalley orders in split reductive Lie algebras.  相似文献   

19.
Let $P$ P be a collection of $n$ n points moving along pseudo-algebraic trajectories in the plane. (So, in particular, there are constants $s,c>0$ s , c > 0 such that any four points are co-circular at most $s$ s times, and any three points are collinear at most $c$ c times.) One of the hardest open problems in combinatorial and computational geometry is to obtain a nearly quadratic upper bound, or at least a sub-cubic bound, on the maximum number of discrete changes that the Delaunay triangulation ${\mathrm{DT}}(P)$ DT ( P ) of $P$ P experiences during the motion of the points of $P$ P . In this paper, we obtain an upper bound of $O(n^{2+{\varepsilon }})$ O ( n 2 + ε ) , for any ${\varepsilon }>0$ ε > 0 , under the assumptions that (i) any four points can be co-circular at most twice and (ii) either no triple of points can be collinear more than twice or no ordered triple of points can be collinear more than once.  相似文献   

20.
A group $G$ is said to be a minimax group if it has a finite series whose factors satisfy either the minimal or the maximal condition. Let $D(G)$ denotes the subgroup of $G$ generated by all the Chernikov divisible normal subgroups of $G$ . If $G$ is a soluble-by-finite minimax group and if $D(G)=1$ , then $G$ is said to be a reduced minimax group. Also $G$ is said to be an $ M_{r}C$ -group (respectively, $PC$ -group), if $G/C_{G} \left(x^{G}\right)$ is a reduced minimax (respectively, polycyclic-by-finite) group for all $x\in G$ . These are generalisations of the familiar property of being an $FC$ -group. Finally, if $\mathfrak X $ is a class of groups, then $G$ is said to be a minimal non- $\mathfrak X $ -group if it is not an $\mathfrak X $ -group but all of whose proper subgroups are $\mathfrak X $ -groups. Belyaev and Sesekin characterized minimal non- $FC$ -groups when they have a non-trivial finite or abelian factor group. Here we prove that if $G$ is a group that has a proper subgroup of finite index, then $G$ is a minimal non- $M_{r}C$ -group (respectively, non- $PC$ -group) if, and only if, $G$ is a minimal non- $FC$ -group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号