共查询到19条相似文献,搜索用时 93 毫秒
1.
2.
3.
运用相对论返波管非线性理论,推导出描述相对论返波管束波互作用的非线性自洽方程组;数值求解了该非线性自洽方程组,揭示了相对论返波管中由非稳态束波互作用产生的超辐射现象的基本规律:输出超辐射波峰值功率大约与参与互作用电子总电荷量的平方成正比。并将超辐射和由稳态束波互作用所产生的受激辐射作了相关比较,结果表明:超辐射是短电子束脉冲产生非稳态束波互作用的结果,而受激辐射是长电子束脉冲产生稳态束波互作用的结果;不断增加电子束脉冲宽度,辐射机制由超辐射转变为受激辐射。 相似文献
4.
5.
6.
7.
8.
运用超辐射机理,通过粒子模拟设计了X波段超辐射相对论返波管,并在小型Tesla脉冲源平台上开展了实验研究。通过空间功率积分和直接对辐射微波时域波形的分析得到实验结果:在束压350 kV、束流4.8 kA、脉宽3.1 ns、引导磁场2.2 T条件下,产生的微波辐射功率1.4 GW,中心频率9.36 GHz,脉宽500~700 ps,辐射模式为TE11,能在重复频率100 Hz下稳定运行。功率转换效率超过80%。实验结果与粒子模拟结果比较吻合,成功实现了在短脉冲条件下产生重复频率、亚纳秒脉宽、GW级微波辐射。 相似文献
9.
随着相对论返波管(RBWO)输出功率的提高,RBWO内部击穿问题日益突出。击穿过程中产生的等离子体,会降低输出功率并导致脉冲缩短,大大限制了RBWO的输出单脉冲能量。采用3维粒子模拟,在反射器、慢波结构、提取腔局部区域产生等离子体,建立了RBWO单点击穿及多点击穿模型,获得了等离子体产生的区域和密度对微波输出性能的影响规律。模拟结果表明,输出微波功率随等离子体密度增加而迅速降低,多点击穿相对于单点击穿情况更容易引起输出微波脉冲提前终止,且发射器击穿产生的等离子体效应更为明显。 相似文献
10.
随着相对论返波管(RBWO)输出功率的提高,RBWO内部击穿问题日益突出。击穿过程中产生的等离子体,会降低输出功率并导致脉冲缩短,大大限制了RBWO的输出单脉冲能量。采用3维粒子模拟,在反射器、慢波结构、提取腔局部区域产生等离子体,建立了RBWO单点击穿及多点击穿模型,获得了等离子体产生的区域和密度对微波输出性能的影响规律。模拟结果表明,输出微波功率随等离子体密度增加而迅速降低,多点击穿相对于单点击穿情况更容易引起输出微波脉冲提前终止,且发射器击穿产生的等离子体效应更为明显。 相似文献
11.
设计了一种紧凑型P波段相对论返波振荡器,其电动力学结构是由同轴慢波结构和同轴引出结构组成的。同轴慢波结构缩小了器件的径向尺寸;同轴引出结构缩短了器件的轴向长度,且提高了束波作用效率。通过粒子模拟研究了器件内束波作用的物理过程,模拟结果表明:器件具有结构紧凑、束波作用效率高的特点。在二极管电压700 kV,电流7 kA,导引磁场1.5 T时,器件在频率833 MHz处获得较高的微波输出,饱和后输出微波的平均功率达1.58 GW,效率约为32%,器件电磁结构尺寸仅为108 mm×856 mm。 相似文献
12.
设计了一种紧凑型P波段相对论返波振荡器,其电动力学结构是由同轴慢波结构和同轴引出结构组成的。同轴慢波结构缩小了器件的径向尺寸;同轴引出结构缩短了器件的轴向长度,且提高了束波作用效率。通过粒子模拟研究了器件内束波作用的物理过程,模拟结果表明:器件具有结构紧凑、束波作用效率高的特点。在二极管电压700 kV,电流7 kA,导引磁场1.5 T时,器件在频率833 MHz处获得较高的微波输出,饱和后输出微波的平均功率达1.58 GW,效率约为32%,器件电磁结构尺寸仅为108 mm×856 mm。 相似文献
13.
14.
15.
提出了X波段双频两段式同轴相对论返波振荡器的物理模型,推导了该结构在冷腔时的TM0n模式色散方程,数值求解了两段式同轴波纹慢波结构TM01模色散曲线;用粒子模拟软件对其结构和电磁参数进行分析研究,优化得到的结构参数为第一、二段分别为10个和4个周期数,周期长度分别为0.50 cm和 0.73 cm,波纹幅值分别为0.13 cm和0.21 cm,平均半径为2.9 cm,同轴间隙为2.1 cm。结果表明:在环形相对论电子注电压为510 kV、电流为9.4 kA,引导磁场为0.7 T的条件下,器件得到了X波段稳定的高功率双频微波输出,其平均功率约为0.75 GW,平均功率效率为15.6%。 相似文献
16.
17.
18.
提出了X波段双频两段式同轴相对论返波振荡器的物理模型,推导了该结构在冷腔时的TM0n模式色散方程,数值求解了两段式同轴波纹慢波结构TM01模色散曲线;用粒子模拟软件对其结构和电磁参数进行分析研究,优化得到的结构参数为第一、二段分别为10个和4个周期数,周期长度分别为0.50 cm和 0.73 cm,波纹幅值分别为0.13 cm和0.21 cm,平均半径为2.9 cm,同轴间隙为2.1 cm。结果表明:在环形相对论电子注电压为510 kV、电流为9.4 kA,引导磁场为0.7 T的条件下,器件得到了X波段稳定的高功率双频微波输出,其平均功率约为0.75 GW,平均功率效率为15.6%。 相似文献
19.
设计了一种L波段同轴引出电子束相对论返波振荡器,采用KARAT 2.5维全电磁粒子模拟程序研究了器件内束-波作用的物理过程,分析了二极管电压和导引磁场对产生微波频率和束-波转换效率的影响。模拟结果表明:该器件在小型化,中等磁场的条件下具有较高的束-波作用效率。在电子束能量700 keV,电子束流10 kA,导引磁场为1.0 T时,器件在频率1.62 GHz处获得较高的微波输出,饱和后微波的平均功率达2.2 GW,平均效率约为30%,器件最大径向半径仅为5.0 cm。 相似文献