首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
功能材料双轴拉伸十字板试件的优化设计   总被引:2,自引:0,他引:2  
王颖晖  方岱宁 《力学学报》2002,34(5):705-714
在对Demmerle和Boehler提出的一个基于试件实验区应力标准差的数学判据进行修正的基础上,将这一判据应用于有限元方法中,通过 ABAQUS有限元软件计算出试件实验区的应力分布,结合Powell优化设计方法,实现了对各向同性形状记忆合金材料双轴拉伸十字板试件的最优化设计.优化设计所得试件的应力位移分布图与原有的Kelly试件迸行了比较,结果表明经过优化的试件在满足双轴试验要求方面有了明显的改进.同时验证了在各向同性材料下优化所得的试件同样适用于各向异性材料.最后,对形状记忆合金相变过程在试验区中引起的应力应变变化进行了数值模拟,其结果表明优化试件完全能够满足记忆合金材料双轴实验的要求.  相似文献   

2.
A high strain rate tensile testing technique for sheet materials is presented which makes use of a split Hopkinson pressure bar system in conjunction with a load inversion device. With compressive loads applied to its boundaries, the load inversion device introduces tension into a sheet specimen. Two output bars are used to minimize the effect of bending waves on the output force measurement. A Digital Image Correlation (DIC) algorithm is used to determine the strain history in the specimen gage section based on high speed video imaging. Detailed finite element analysis of the experimental set-up is performed to validate the design of the load inversion device. It is shown that under the assumption of perfect alignment and slip-free attachment of the specimen, the measured stress–strain curve is free from spurious oscillations at a strain rate of 1,000 s?1. Validation experiments are carried out using tensile specimens extracted from 1.4 thick TRIP780 steel sheets. The experimental results for uniaxial tension at strain rates ranging from 200 s?1 to 1,000 s?1 confirm the oscillation-free numerical results in an approximate manner. Dynamic tension experiments are also performed on notched specimens to illustrate the validity of the proposed experimental technique for characterizing the effect of strain rate on the onset of ductile fracture in sheet materials.  相似文献   

3.
A special strain gage called the shear gage was developed for composite materials testing with notched shear specimens. The shear-gage records the average shear strain across the entire test section between the notches of the losipescu and compact shear specimens rather than just sampling the shear strain over a small region in the center of the test section. Hence, the shear stress/strain response is obtained by dividing the average shear stress (load divided by the cross-sectional area between the notches) by the average shear strain. By placing gages on both faces of the specimen, accurate and repeatable shear-modulus measurements can be made without prior knowledge of the shear strain or stress distributions. This scheme essentially integrates the shear strain through the entire test section. Knowledge of other material properties is not required to accurately determine shear modulus values. The shear gage was tested on a variety of composite and isotropic materials resulting in more reliable shear modulus determination and less scatter than previously possible.  相似文献   

4.
In the present study a new insert design is presented and validated to enable reliable dynamic mechanical characterization of low strain-to-failure materials using the Split-Hopkinson Pressure Bar (SHPB) apparatus. Finite element-based simulations are conducted to better understand the effects of stress concentrations on the dynamic behavior of LM-1, a Zr-based bulk metallic glass (BMG), using the conventional SHPB setup with cylindrical inserts, and two modified setups—one utilizing conical inserts and the other utilizing a “dogbone” shaped specimen. Based on the results of these computational experiments the ends of the dogbone specimen are replaced with high-strength maraging steel inserts. This new insert-specimen configuration is expected to prevent specimen failure outside the specimen gage section. Simulations are then performed to validate the new insert design. Moreover, high strain-rate uniaxial compression tests are conducted on LM-1 using the modified SHPB with the new inserts. An ultra-high-speed camera is employed to investigate the changes in failure behavior of the specimens. Additional experiments are conducted with strain gages directly attached to the gage section of the specimens to determine accurately their dynamic stress–strain behavior.  相似文献   

5.
Microsample tensile testing has been established as a means of evaluating the room temperature mechanical properties of specimens with gage sections that are tens to hundreds of microns thick and several hundred microns wide. The desire to characterize the mechanical response of materials at elevated temperatures has motivated the development of high-temperature microsample testing that is reported here. The design of specially insulated grips allows the microsamples to be resistively heated using approximately 2 V DC and currents ranging between 2 to 6 A. An optical pyrometer with nominal spot size of 290 μm and 12 μm diameter type K thermocouples was employed to measure and verify the temperature of the microsamples. The ability of the pyrometer to accurately measure temperature on microsamples of different thicknesses and with slightly different emissivities was established over a temperature range from 400°C to 1100°C. The temperature gradient along the length and thickness of the microsample was measured, and the temperature difference measured in the gage section used for strain measurements was found to be less than 6.5°C. Examples of elevated temperature tensile and creep tests are presented.  相似文献   

6.
A shear-compression specimen for large strain testing   总被引:5,自引:0,他引:5  
A new specimen geometry, the shear-compression specimen (SCS), has been developed for large strain testing of materials. The specimen consists of a cylinder in which two diametrically opposed slots are machined at 45° with respect to the longitudinal axis, thus forming the test gage section. The specimen was analyzed numerically for two representative material models, and various gage geometries. This study shows that the stress (strain) state in the gage, is three-dimensional rather than simple shear as would be commonly assumed. Yet, the dominant deformation mode in the gage section is shear, and the stresses and strains are rather uniform. Simple relations were developed and assessed to relate the equivalent true stress and equivalent true plastic strain to the applied loads and displacements. The specimen was further validated through experiments carried out on OFHC copper, by comparing results obtained with the SCS to those obtained with compression cylinders. The SCS allows to investigate a large range of strain rates, from the quasi-static regime, through intermediate strain rates (1–100 s−1), up to very high strain rates (2×104s−1 in the present case).  相似文献   

7.
This paper presents an analytical treatment as well as experimental measurement of the plastic deformation field in shear-compression specimen (SCS) by using digital image processing (DIC) technique. The results provide a set of useful expressions that relates externally applied displacement and load quantities to the equivalent stress and equivalent plastic strain within the gage section. Based on the analysis, we propose modifying the slot angle of SCS geometry from its original value of 45º to 35.26º in order to enhance the uniformity of stress and strain fields in gage section. It is shown by analysis that this enhancement is essentially because the compatibility and boundary conditions that yield a homogeneous deformation field is naturally satisfied for the particular slot orientation of ???=?35.26°. This conclusion is also supported by experimental evidence that comparatively shows the edge effects for varying slot angles.  相似文献   

8.
It is in general challenging to characterize planar mechanical properties of extremely soft tissues such as cell-seeded collagen gels. One of the difficulties is related to premature failure of specimens. This issue may be resolved by employing fillets on stress-concentrated spots of the specimen. The existence of fillets, however, complicates the estimation of stress at the center of the specimen where stiffness data are collected. In this study, cruciform rubber specimens with two types of fillets (general vs. cut-in fillets) at the intersections of perpendicular arms were prepared and subjected to planar biaxial mechanical testing, aiming at investigating how the fillets affect the estimation of mechanical properties of cruciform specimens. Digital image correlation was used to analyze full-field deformation in the central region of the specimens. Finite element analysis with a Neo-Hookean model was performed to simulate the full-field deformation under the same experimental boundary conditions. The strain distribution for each specimen geometry obtained by finite element analysis was found to be in good agreement with that analyzed by digital image correlation, validating the finite element models. Finite element simulation showed that the greatest value of the maximum principal strain decreased with increasing the fillet radius regardless of the fillet type. Increasing the fillet radius, in general, also reduced the strain field uniformity in the central region. Compared with general fillets, however, the use of cut-in fillets provided greater strain field uniformity given the same fillet radius. Finite element analysis was also used to estimate effective transverse length required to convert tensile force at the boundary to local stress at the center. It was found that the effective transverse length for each specimen geometry remained relatively constant if the specimen was not excessively deformed (i.e., global equibiaxial stretch ≤ 1.2). We suggest using cut-in fillets at the intersections of perpendicular arms when preparing cruciform specimens for testing extremely soft tissues.  相似文献   

9.
The uniaxial true stress logarithmic strain curve for a thick section can be determined from the load–diameter reduction record of a round tensile specimen. The correction of the true stress for necking can be performed by using the well-known Bridgman equation. For thin sections, it is more practical to use specimens with rectangular cross-section. However, there is no established method to determine the complete true stress–logarithmic strain relation from a rectangular specimen. In this paper, an extensive three-dimensional numerical study has been carried out on the diffuse necking behaviour of tensile specimens made of isotropic materials with rectangular cross-section, and an approximate relation is established between the area reduction of the minimum cross-section and the measured thickness reduction. It is found that the area reduction can be normalized by the uniaxial strain at maximum load which represents the material hardening and also the section aspect ratio. Furthermore, for the same material, specimens with different aspect ratio give exactly the same true average stress–logarithmic strain curve. This finding implies that Bridgmans correction can still be used for necking correction of the true average stress obtained from rectangular specimens. Based on this finding, a method for determining the true stress–logarithmic strain relation from the load–thickness reduction curve of specimens with rectangular cross-section is proposed.  相似文献   

10.
Surface mounted strain gages are used to characterize the behavior of polymer-enhanced cementitious beams designed to withstand reverse loadings. These unique composite structures are doubly reinforced with hollow carbon fiber (graphite) tendons equipped with strain gages and the study includes section design, materials considerations, structural testing, and finite element analysis. The primary purpose of strain gage integration is to insure that the stress in the materials remains within the elastic range so that damage does not occur. A finite element model is developed to characterize the structural response in the elastic range and a hybrid approach is suggested in which displacement, strain, and stress can be obtained with a single strain gage. The ability to characterize structural performance beyond the elastic range is also demonstrated by analyzing data obtained from displacement-controlled tests.  相似文献   

11.
Arising from a design study, an examination has been made of the problems associated with evaluating the fatigue behavior of an I-beam section joined to a transverse stiffener, loaded in biaxial bending. A laboratory test rig has been designed to study high-frequency (40–230 Hz) fatigue-crack propagation in the tensile flange of a composite aluminum I-section, for a range of stress biaxiality ratios (λ) from 0 to +1 (equibiaxial tension), λ being varied by adjusting the ratios of loading spans in the two orthogonal axes for the same amount of uniaxial deflection. The results obtained are considered in the context of the significantly contradictory information currently available in the literature. Crack geometry and test procedure (as influenced by load/stress measurement) are found to considerably influence the effect of biaxial stresses on fatigue. Thus, the growth rate of corner-initiated cracks increases with increasing stress biaxiality (monitored in terms of nominal applied stresses), but the reverse is true for center-cracked specimens. When tests are conducted in terms of combinations of local stresses, or data reduced using corrections, there is no significant effect of biaxial stresses on fatigue-crack growth.  相似文献   

12.
This paper documents an experimental study that was conducted to demonstrate the sensitivity of the shear gage to the presence of normal strains. The shear gage is a specially designed strain gage rosette that measures the average shear strain in the test section of notched specimens such as the losipescu, Arcan and compact shear specimens. These specimens can have complicated stress states with high shear and normal strain gradients. To evaluate the sensitivity of the shear gage to normal strains, shear gages were tested on an Arcan specimen. The Arcan specimen is a notched specimen that can be loaded in pure shear (90 deg), pure tension (0 deg) and at intermediate 15- deg increments. The shear modulus for an aluminum specimen was determined at each of these loading angles. It was found that the gages display nearly zero sensitivity to normal strains ( x, y). Moiré interferometry was used to document the shear and normal strain distributions in the test section and to provide an independent method for determining the average shear strain. These results reinforce the robust nature of testing with the shear gage.  相似文献   

13.
A screw-driven new biaxial testing machine for the realization of experimental investigations on anisotropic sheet materials, such as composite plates or rolled sheet metals, is presented. The described mechanical concept and servocontrol system allow cruciform specimens to be subjected to large strain biaxial tensile and compressive tests without kinematic incompatibilities. Moreover, for the proper implementation of biaxial tensile tests, the specific problems linked to the anisotropic properties of the investigated materials are taken into account; therefore, for the first time, the biaxial machine is supplied with the original ‘off-axes testing device,’ consisting of hinged fixtures with knife-edges at each arm of the cruciform specimen. A recently developed optimization method for the optimal design of flat tensile cruciform specimens is shortly reviewed. Numerical simulations illustrate the decisive superiority of the optimized specimen compared with specimen designs proposed in the literature, as well as the necessity to use the ‘off-axes’ testing technique in biaxial tests on anisotropic materials.  相似文献   

14.
摘 要: 材料拉伸直至断裂的全程单轴本构关系对材料大变形和断裂机理研究具有重要意义。传统拉伸试验获取的材料真应力-真应变曲线在试样颈缩后不可测。借助可以精确测量三维变形的DIC(Digital image correlate) 技术和有限元分析技术(Finite element analysis),本文提出了基于漏斗试样拉伸试验获取材料全程单轴本构关系的新方法,即TF(Test and FEA)方法。该方法将TF方法获取的材料全程单轴应力应变关系曲线作为有限元软件中的材料本构关系对漏斗试样拉伸变形过程进行模拟,其模拟载荷-位移曲线、漏斗根部直径-位移曲线和漏斗变形轮廓线等均与试验结果吻合良好,试样表面模拟应变也与DIC测试结果吻合, 根据不同半径漏斗试样模拟获得的全程真应力-真应变曲线保持良好一致性。最后,还对试样颈缩断面的力学行为进行了讨论,并给出了304不锈钢、汽轮机叶片材料2Cr12Ni4Mo3VNBN和 1Gr12Ni3Mo2VN、汽轮机转子材料30Cr2Ni4MoV的全程单轴本构关系模型参数、破断应力和破断应变。  相似文献   

15.
Development of an apparatus for biaxial testing using cruciform specimens   总被引:2,自引:1,他引:2  
A testing apparatus has been developed to study the behavior of sheet metals and composite materials under monotonic and cyclic biaxial loading conditions. This test facility employs cruciform specimens that are loaded in their plane. Problems encountered while developing the test system are discussed.We also discuss the difficulties common to test methods employing cruciform specimens. These relate to the design of a suitable specimen geometry and to the determination of the stresses throughout the specimen. A method for designing an optimal geometry for these specimens is presented. This method is based on the statistical tools of factorial and response surface designs. The statistical method, coupled with a finite-element analysis of the specimen, was successfully applied to optimize the geometry of a cruciform specimen with a circular reduced central region.Paper was presented at the 1989 SEM Spring Conference on Experimental Mechanics held in Cambridge, MA on May 28–June 8.  相似文献   

16.
A new, convenient and cost-effective method of determining in situ adhesive shear moduli using strain gages is proposed and evaluated. Thick-adherend lap shear specimens with stacked gage rosettes at the center of the bond line are loaded in tension for adhesive shear strain measurement. Experimental and numerical results indicate that the test specimen has a nonuniform adhesive shear stress (or strain) distribution in the test section and that this distribution (except at the center point of the bond line) is greatly affected by load eccentricity. In addition to the nonuniformity in the shear stress distribution, the issue of material nonhomogeneity in the gage-covered region affects the strain gage measurement. By taking into account these two issues and assuming linear-elastic behavior, two approaches for converting the gage-measured shear strain into the adhesive shear strain are developed and verified by experiment. It is shown that the strain gage measurement associated with either of two conversion techniques can determine the in situ adhesive shear moduli, which are comparable with moiré experiment and KRG-1 extensometer measurements.  相似文献   

17.
Testing of high-strength, tubular, composite specimens in uniaxial and biaxial tension require end-grip fixturing to transfer large axial loads into the specimen. Two gripping configurations were analytically and experimentally evaluated to determine their affect on stress distribution within the specimen test section. The first was a bonded grip in which the tubular specimen is adhesively bonded in a deep-slotted aluminum end tab. The second was a threaded grip with glass cloth/epoxy overwrap on the specimen ends that thread into an aluminum, split-collar end tab. Large axial loads can be transmitted to the specimen with either design; however, each introduces axial-stress concentrations into the composite sample. The magnitude and distribution of stresses (strains) with axial position, which are a function of biaxial-stress ratio, were computed by finite-element analyses and verified experimentally with surface-strain measurements. This study illustrates the importance of utilizing analytical tools to examine the effect of end grip/specimen interaction on stress distribution within the gage section and on test data.  相似文献   

18.
An experimental technique is proposed to determine the tensile stress–strain curve of metals at high strain rates. An M-shaped specimen is designed which transforms a compressive loading at its boundaries into tensile loading of its gage section. The specimen can be used in a conventional split Hopkinson pressure bar apparatus, thereby circumventing experimental problems associated with the gripping of tensile specimens under dynamic loading. The M-specimen geometry provides plane strain conditions within its gage section. This feature retards necking and allows for very short gage sections. This new technique is validated both experimentally and numerically for true equivalent plastic strain rates of up to 4,250/s.  相似文献   

19.
Nasdala  L.  Husni  A. H. 《Experimental Mechanics》2020,60(6):815-832

Background: For the standard ISO 16842 cruciform test specimen, stresses obtained from the gauge area are far below the ultimate tensile strength due to high stress concentrations at the slit ends which lead to premature failure. Objective: To introduce a new cruciform specimen design which has been optimized with respect to the determination of yield surfaces. Methods: The proposed design differs from the ISO standard by an additional thinning of the gauge area and wider slits in the arms to avoid stress singularities. Compared to other cruciform test piece designs found in the literature, the stress distribution is still homogeneous and there is no need to reduce the size of the gauge area, thanks to the specimen’s well-balanced proportions. Results: Biaxial tensile tests have been conducted with aluminium 5754 alloy samples of different thicknesses. For the standard cruciform test piece, the maximum strain achieved at the gauge area is only 25% of the fracture strain. The optimized cruciform test piece can attain about 66% of the fracture strain before breaking. Conclusions: The optimized specimen design enables the measurement of yield surfaces at higher stress levels. In case of other materials such as elastomers, the slit length has be to adjusted accordingly.

  相似文献   

20.
A new design of the shear compression specimen (SCS) for investigating the viscoelastic shear response of polymers is presented. The specimen consists of a polymer gage section with two metal ends that remain essentially rigid during deformation. Two closed-form analytic models are developed to predict the average stress and strain in the gage section from the deformation-load histories. This new SCS design and its analytic models are thoroughly evaluated via laboratory measurements and numerical simulations. These simulations show that the deformations in the gage section are more uniform than in the original design, and the distribution of the average shear stress and strain are highly homogenous. The simulation results yield good agreement with those of closed-form analytic results and the experiments demonstrate that the new SCS geometry and its analytic models are as reliable as other commonly employed specimens. It can also generate higher strain rates under usual loading conditions because of its smaller specimen gage length. The need for care in specimen preparation is also discussed in detail as illuminated by the experimental and simulation results.
W.G. Knauss (SEM Fellow)Email:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号