首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 702 毫秒
1.
A novel electrochemical DNA biosensor based on zinc oxide (ZnO) nanoparticles and multi-walled carbon nanotubes (MWNTs) for DNA immobilization and enhanced hybridization detection is presented. The MWNTs/nano ZnO/chitosan composite film modified glassy carbon electrode (MWNTs/ZnO/CHIT/GCE) was fabricated and DNA probes were immobilized on the electrode surface. The hybridization events were monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as an indicator. The sensor can effectively discriminate different DNA sequences related to PAT gene in the transgenic corn, with a detection limit of 2.8× 10^-12 mol/L of target sequence.  相似文献   

2.
A novel gold-label silver-stain electrochemical immunosensor based on polythionine-gold nanoparticles (PTh-Au NPs) modified glassy carbon electrode (GCE) as a platform and secondary antibody labeled Au NPs (Ab2-Au NPs) as immumoprobe for carcinoembryonic antigen (CEA) detection. The sandwich-type biosensor adopted anodic stripping voltammetry to detect silver stripping signal when the Ab2-Au NPs of the formed immunocomplexes were stained with silver.  相似文献   

3.
An effective procedure for constructing a DNA biosensor is developed based on covalent immobilization of NH_2 labeled,single strand DNA(NH_2-ssDNA) onto a self-assembled diazo-thiourea and gold nanoparticles modified Au electrode(diazo-thiourea/GNM/Au).Gold nano-particles expand the electrode surface area and increase the amount of immobilized thiourea and single stranded DNA(ssDNA) onto the electrode surface.Diazo-thiourea film provides a surface with high conductibility for electron transfer and a bed for the covalent coupling of NH_2-ssDNA onto the electrode surface.The immobilization and hybridization of the probe DNA on the modified electrode is studied by differential pulse voltammetry(DPV) using methylene blue(MB) as a well-known electrochemical hybridization indicator.The linear range for the determination of complementary target ssDNA is from 9.5(±0.1) × 10~(-13) mol/L to1.2(±0.2) x 10~(-9) mol/L with a detection limit of 1.2(±0.1) 10~(-13) mol/L.  相似文献   

4.
The fabrication of poly(2,6-pyridinedicarboxylic acid)/MWNTs modified glass electrode(PPDA/MWNTs/GCE) was proposed and used for individual or simultaneous determination of guanine and adenine.The performances of the PPDA/MWNTs/GCE were characterized with cyclic voltammetry(CV).The modified electrode exhibited enhanced electrocatalytic behavior and good stability for the detection of guanine and adenine.Differential pulse voltammetry(DPV) was used to determine the concentration of guanine,adenine.The detection limit(S/N = 3) for guanine and adenine was 0.045μmol/L and 0.05μmol/L,respectively.The electrochemical method for the measurement of guanine and adenine in calf thymus DNA was also developed with this modified electrode and the result was satisfactory.  相似文献   

5.
He  Xuan  Wang  Shaofei  Liu  Yu  Wang  Xiaolin 《中国科学:化学(英文版)》2019,62(8):1064-1071
The uranyl ion(UO_2~(2+)) poses high risks to human health and the environment, hence its detection and monitoring is of utmost significance. However, the development of an ultra-sensitive, high-efficiency and convenient approach for on-site detection of UO_2~(2+) remains a challenge. Herein, a reliable and reusable surface-enhanced Raman spectroscopy(SERS)-based microfluidic biosensor was developed for rapid detection of UO_2~(2+) in real samples. The detection protocol involved the reaction of 5′-Rhodamine B(RhB)-labeled double-stranded DNA for UO_2~(2+)-specific DNAzyme-cleavage reaction in a U-shaped microchannel. Then, the reaction products were delivered into three parallel samples for high-throughput tests by SERS biochips,where 3 D ZnO-Ag mesoporous nanosheet arrays(MNSs) were modified with a single-stranded DNA(ssDNA). The ssDNAwas sequence-complementary with the 5′-RhB-labeled cleaved-stranded DNA(csDNA) from the reaction products. By the hybridization of ssDNA and csDNA, the signal probe RhB was fixed close to the surface of the ZnO-Ag MNSs to enhance the Raman signal. The limit of detection for UO_2~(2+) with the microfluidic-SERS biosensor was 3.71×10~(-15) M. An over 20,000-fold selectivity towards UO_2~(2+) response was also achieved in the presence of 15 other metal ions. The high-throughput microfluidicSERS biosensor operated well for practical UO_2~(2+) detection, with excellent recoveries in contaminated river and tap water from95.2% to 106.3%(relative standard deviation(RSD) 6.0%, n=6). Although the SERS-based microfluidic biosensor developed in this study was deployed for the detection of UO_2~(2+), the reusable and high-efficiency system may be expanded to the detection of other analytes on-site.  相似文献   

6.
Gold nanoparticles (nano Au)/titanium dioxide (TiO2) hollow microsphere membranes were prepared on the carbon paste electrode (CPE) for enhancing the sensitivity of DNA hybridization detection. The immobilization of nano Au and TiO2 microsphere was investigated with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The hybridization events were monitored with EIS us-ing [Fe(CN)6]3-/4- as indicator. The sequence-specific DNA of the 35S promoter from cauliflower mosaic virus (CaMV35S) gene was detected with this DNA electrochemical sensor. The dynamic detection range was from 1.0×10-12 to 1.0×10-8 mol/L DNA and a detection limit of 2.3×10-13 mol/L could be ob-tained. The polymerase chain reaction (PCR) amplification of the terminator of nopaline synthase (NOS) gene from the real sample of a kind of transgenic soybean was also satisfactorily detected.  相似文献   

7.
The graphene-gold nanoparticles composite film modified glassy carbon electrode (EG- AuNPs/GCE) was prepared by one-step coelectrodeposition and employed for determination of trace mercury in environmental water with differential pulse stripping voltammetry. Such a nanostructured composite film combined with the advantages of gold nanoparticles and graphene, can greatly promote the electron-transfer process and increase accumulation abil-ity for Hg(Ⅱ), leading to a remarkably improved sensitivity. The linear calibration curve ranged from 0.2 μg/L to 30 μg/L for Hg(Ⅱ) and the detection limit (S/N=3) was found to be 0.03 μg/L at a deposition time of 300 s. Moreover, the stablity of the as-prepared electrode and interferences from other substances were evaluated. The modified electrode was successfully applied to the direct detection of Hg(Ⅱ) in real water samples.  相似文献   

8.
An amperometric biosensor, based on layer-by-layer self-assembly of colloidal gold nanoparticles, cysteine and horseradish peroxidase on Nafion modified electrode surface by electrostatic adsorption, has been used for the determination of hydrogen peroxide. The electrochemical behavior of the multilayer film was studied by cyclic voltammetry, linear sweep voltammetry and chronoamperometry. The step layer-by-layer adsorption interface morphology was further characterized by means of electrochemical impedance spectroscopy and cyclic voltammetry. The performance and factors influencing the resulted biosensor were studied in detail. The sensor displayed an excellent electrocatalytic response to the reduction of H2O2 without the aid of an electron transfer mediator. Linear response to H2O2 was obtained for the concentration range from 1.6 μM to 2.4 mM under optimized conditions. The detection limit of the biosensor was 0.5 μM (S/N = 3), and the sensor achieved 95% of the steady-state current within 10 s. The sensor exhibited high sensitivity, selectivity and stability. Correspondence: Yan Liu, College of Chemistry, Chongqing Normal University, Chongqing 400047, P.R. China  相似文献   

9.
A novel electrochemical sensor based on the immobilization of tyrosinase(tyr) onto gold nanoparticles(nano-Au) and thioctic acid amide(T-NH2) self-assembled monolayers(SAMs)-modified gold electrode has been developed for the determination of bisphenol A(BPA).It was found that the nano-Au could significantly enhance the electrochemical response of tyr/nano-Au/T-NH2/Au electrode to BPA,and the enhancement effect of nano-Au on the current response was also related to the enzyme.The results indicated that the biosensor could be used as a detector for BPA determination with a linear range from3.99 ×10-7mol/L to 2.34 ×10-4mol/L and a detection limit of 1.33×10-7mol/L.In addition,this biosensor showed good reproducibility.  相似文献   

10.
An electrochemical biosensor for low cost and highly sensitive and selective detection of SARS-CoV-2 target nucleic acid was developed based on two cascaded toehold-mediated strand displacement reactions (TSDRs). Driven by thermodynamic entropy, the target nucleic acid bound to the first toehold region of the probes, leading to the first TSDR and the second toehold region exposed. Subsequently, the methylene blue (MB)-modified signal probe triggered the second TSDR and led to cyclic reuse of the target nucleic acid. Based on cascaded TSDRs, a large number of signal probes were combined on the sensor surface to produce significantly enhanced square wave voltammetry (SWV)electrochemical signals. The results showed that the SWV signal intensity was proportional to the logarithm of the target nucleic acid concentration, and had a good linear relationship in the range of 5×10-14-5×10-10 mol/L with a detection limit of 1.8×10-14 mol/L. Moreover, the sensor could be employed to monitor SARS-CoV-2 nucleic acid in 10% serum samples. © 2023, Youke Publishing Co.,Ltd. All rights reserved.  相似文献   

11.
In the present study, a comparison between a disposable electrochemical DNA biosensor and a Vibrio fischeri-based luminescent sensor for the detection of toxicants in water samples was made.In order to realize this study, a disposable electrochemical DNA biosensor has been reported. The DNA biosensor is assembled by immobilizing double stranded Calf Thymus DNA onto the surface of a disposable carbon screen-printed electrode. The oxidation signal of the guanine base, obtained by a square wave voltammetric scan, is used as analytical signal to detect the DNA damage; the presence of low molecular weight compounds with affinity for nucleic acids is measured by their effect on the guanine oxidation peak.Wastewater samples provided during First European Interlaboratory Exercise on water toxicity in the course of the project SWIFT-WFD were analyzed, and biosensor results were compared with a currently used toxicity test ToxAlert®100 based on the bioluminescence inhibition of Vibrio fischeri. This test have been used because is rapid, easy handling and cost effectively responses for the toxicity assessment in real water samples.The results showed a promising correlation between two tests used for the detection of toxic compounds in water samples.  相似文献   

12.
《Electroanalysis》2017,29(6):1618-1625
An electrochemical sensor was developed based on gold nanoparticles incorporated in mesoporous MFI zeolite for the determination of purine bases. Au nanoparticles (AuNPs) were incorporated into the mesoporous MFI zeolite (AuNPs/m‐MFI) by post‐grafting reaction. The composite materials were characterized by transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS) and electrochemical methods. Au nanoparticles with a size of 5‐20 nm are uniformly dispersed in the pores of mesoporous MFI zeolite. And the morphology of MFI zeolite can be perfectly kept after pore expansion and Au nanoparticles incorporation. The electrocatalytic oxidation of purine bases (guanine and adenine in DNA) is investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The surface‐confined Au nanoparticles provide the good catalytic activity for oxidation of purine bases. The simultaneous detection of guanine and adenine can be achieved at AuNPs/m‐MFI composites modified glassy carbon electrode (GCE). The electrochemical sensor based on AuNPs/m‐MFI exhibits wide linear range of 0.5–500 μM and 0.8–500 μM with detection limit of 0.25 and 0.29 μM for guanine and adenine, respectively. Moreover, the electrochemical sensor is applied to evaluation of guanine and adenine in herring sperm DNA samples with satisfactory results.  相似文献   

13.
In this study, we fabricated an effective and sensitive DNA biosensor based on flower-like Pt/NiCo2O4 modified carbon paste electrode (FL-Pt/NiCo2O4/CPE) for detection of pramipexole (PPX). Spectrophotometry, differential pulse voltammetry (DPV) and docking methods were employed to evaluate the interaction of DNA-PPX. Moreover, the DPV technique was chosen to monitor the electrochemical response of guanine on the DNA biosensor. The relationship between the concentration of PPX and the oxidation signal of guanine was linear in the range of 0.4 to 310.0 μM and a limit of detection (LOD) of 0.09 μM was calculated.  相似文献   

14.
In this paper, nano‐gold modified carbon paste electrode (NGMCPE) was employed to develop an electrochemical DNA hybridization biosensor. The proposed sensor was made up by immobilization of 15‐mer single stranded oligonucleotide probe for detection of target DNA. Hybridization detection relies on the alternation in guanine oxidation signal following hybridization of the probe with complementary genomic DNA. The guanine oxidation was monitored using differential pulse voltammetry (DPV). Different factors such as activation potential, activation time and probe immobilization conditions were optimized. The selectivity of the sensor was investigated by non‐complementary oligonucleotides. Diagnostic performance of the biosensor was described and the detection limit was found 1.9 × 10?13 M at the NGMCPE surface. All of the investigations were performed in both CPE and NGMCPE and finally their results were compared.  相似文献   

15.
A novel DNA biosensor has been fabricated for the detection of DNA hybridization based on layer‐by‐layer (LBL) covalent assembly of gold nanoparticles (GNPs) and multiwalled carbon nanotubes (MWCNTs). The stepwise LBL assembly process was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The hybridization events were monitored by differential pulse voltammetry (DPV) measurement of the intercalated doxorubicin, and the factors influencing the performance of the DNA hybridization was investigated in detail. The signal was linearly changed with target DNA concentration increased from 0.5 to 0.01 nM, and had a detection limit of 7.5 pM (signal/noise ratio of 3). In addition, the DNA biosensor showed an excellent reproducibility and stability under the DNA‐hybridization conditions.  相似文献   

16.
《Electroanalysis》2006,18(5):456-464
An electrochemical DNA biosensor was developed by DNA immobilization at the electrode surface and its electrochemical behavior was studied in relation with different materials added in the paste. The aim was to study new materials for the development of new electrode surfaces, to be applied in the study of DNA – drug interactions. New electrochemical sensing materials using polymer multilayers were reported for the adsorption of DNA. These materials were prepared by mixing a polymer ion exchanger and graphite powder. The mixture was then used to render the modified carbon paste electrode (CPE), on the surface of which the dsDNA was adsorbed and studied by differential pulse voltammetry (DP voltammetry). The signal of guanine oxidation peak of DNA was followed. This modified biosensor was applied for the study of the interaction between DNA and the known intercalators Ethidium Bromide (EB) and Acridine Orange (AO). The established biosensor exhibited an improvement of its sensitivity and repeatability compared with the conventional CPE DNA biosensor.  相似文献   

17.
A novel electrochemical DNA biosensor based on graphene-three dimensional nanostructure gold nanocomposite modified glassy carbon electrode (G-3D Au/GCE) was fabricated for detection of survivin gene which was correlated with osteosarcoma. The G-3D Au film was prepared with one-step electrochemical coreduction with graphite oxide and HAuCl4 at cathodic potentials. The active surface area of G-3D Au/GCE was 2.629 cm2, which was about 3.8 times compared to that of a Au-coated GCE under the same experimental conditions, and 8.8 times compared to a planar gold electrode with a similar geometric area. The resultant nanocomposites with high conductivity, electrocatalysis and biocompatibility were characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). A “sandwich-type” detection strategy was employed in this electrochemical DNA biosensor and the response of this DNA biosensor was measured by CV and amperometric current–time curve detection. Under optimum conditions, there was a good linear relationship between the current signal and the logarithmic function of complementary DNA concentration in a range of 50–5000 fM with a detection limit of 3.4 fM. This new biosensor exhibited a fast amperometric response, high sensitivity and selectivity and has been used in a polymerase chain reaction assay of real-life sample with a satisfactory result.  相似文献   

18.
韩苗苗  王萍  席守民 《分析测试学报》2020,39(12):1466-1472
该文以DNA四面体纳米结构探针(TSP)为捕获探针,将辣根过氧化物酶标记的IgG抗体结合在纳米金颗粒表面(AuNPs-IgG-HRP)作为信号分子,构建了一种新型DNA甲基化电化学传感器。利用一步热变性法组装成TSP后,通过Au—S键固定在修饰纳米金颗粒的金电极表面,经过靶标DNA杂交、5-甲基胞嘧啶(5-mc)抗体及AuNPs-IgG-HRP结合后,用差分脉冲伏安法(DPV)进行检测。采用循环伏安法(CV)和电化学阻抗谱(EIS)对修饰电极的构建过程进行电化学表征。探究了杂交时间、5-mc抗体浓度、IgG-HRP加入体积、氢醌(HQ)和过氧化氢(H2O2)浓度对传感器的影响。在最佳条件下,该传感器对甲基化DNA的线性响应范围为1.0×10-15~1.0×10-10 mol/L,检出限(S/N=3)为4.4×10-16 mol/L。该传感器具有良好的选择性和稳定性,为DNA甲基化检测提供了新方法。  相似文献   

19.
《Electroanalysis》2003,15(7):667-670
An electrochemical hybridization biosensor based on peptide nucleic acid (PNA) probes with a label‐free protocol is described. The detection of PNA‐DNA and DNA‐DNA hybridizations were accomplished based on the oxidation signal of guanine by using differential pulse voltammetry (DPV) at carbon paste electrode (CPE). It was observed that the oxidation signals of guanine obtained from the PNA and DNA probe modified CPEs were higher than those obtained from the PNA‐DNA and DNA‐DNA hybrid modified CPEs due to the accessible unbound guanine bases. The detection of hybridization between PNA probe and point mutation containing DNA target sequences was clearly observed due to the difference of the oxidation signals of guanine bases, because the point mutation was guanine nearly at the middle of the sequence. The effect of the DNA target concentration on the hybridization signal was also observed. The PNA probe was also challenged with excessive and equal amount of noncomplementary DNA and also mixtures of point mutation and target DNA.  相似文献   

20.
《Analytical letters》2012,45(17):3159-3169
Abstract

The nanocomposites of gold nanoparticles and multi‐walled carbon nanotubes (MWCNTs) have been applied in the enhanced electrochemical detection of DNA hybridization. Gold nanoparticles coated on MWCNTs uniformly were synthesized by simply one step reaction. Target DNA was detected by the peak current difference of differential pulse voltammetry (DPV) signals of the electroactive indicator methylene blue (MB) before and after hybridization on the Au/MWCNTs modified glass carbon electrode (GCE). Due to the excellent electrical conductivity of the novel matrix, the biosensor revealed high sensitivity with the detection level down to 1.0 pM. Excellently selectivity and reproducibility were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号