首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 813 毫秒
1.
The interface localization transition in thin uniaxial liquid crystal films with competing surface fields has been studied using Metropolis Monte Carlo simulations. The model is constructed from a lattice of continuously orientable interacting spins, and the Hamiltonian contains both bilinear and biquadratic contributions. The biquadratic contribution to the Hamiltonian is familiar from the Lebwohl-Lasher model, and accounts for the particle anisotropy in a liquid crystal. The head-tail asymmetry of the molecules in a uniaxial liquid crystal is taken into account through a bilinear contribution familiar from the classical ferromagnetic Heisenberg model with exchange anisotropy Lambda. The critical temperature T(c), characterizing the interface localization transition within the uniaxial liquid crystal film, depends strongly on the relative magnitudes of the bilinear and biquadratic interactions between the spins. For systems dominated by the biquadratic interaction, T(c) is found to be close to the bulk critical temperature of the system. But as the biquadratic interaction strength is reduced, T(c) departs markedly from the bulk critical temperature of the system.  相似文献   

2.
A. Weizenmann 《Physica A》2010,389(23):5416-5424
We study the effect of the dipolar coupling on the magnetic properties of two small interacting ferromagnetic particles. Each particle is a two-dimensional array of Ising spins with a central spin surrounded by a variable number of shells. The coupling between spins inside each particle is ferromagnetic and the dipolar interaction between the particles is determined as a function of the number of shells, temperature, and distance between their centers. We investigate the system by mean-field approximation and Monte Carlo simulations. The dipolar interaction is calculated in two ways, one assuming effective spins in the centers of the particles, and the other directly computing the interactions among all the pairs of spins, one in each particle. We show that the difference in the corresponding dipolar energies is a power law on the distance with exponent 5. We calculate the magnetization and susceptibility as a function of temperature, number of shells and distance between the particles’ centers. We show that the critical temperature increases with the number of spins in each particle, and it is more noticeable in the mean-field calculations than in the Monte Carlo simulations.  相似文献   

3.
In order to explain the absence of hysteresis in ferromagnetic p-type (Cd,Mn)Te quantum wells (QWs), spin dynamics was previously investigated by Monte Carlo simulations combining the Metropolis algorithm with the determination of hole eigenfunctions at each Monte Carlo sweep. Short-range antiferromagnetic superexchange interactions between Mn spins—which compete with the hole-mediated long-range ferromagnetic coupling—were found to accelerate magnetization dynamics if the layer containing Mn spins is wider than the vertical range of the hole wave function. Employing this approach it is shown here that appreciate magnitudes of remanence and coercivity can be obtained if Mn ions are introduced to the quantum well in a delta-like fashion.  相似文献   

4.
We propose a general method of using the Fokker-Planck equation (FPE) to link the Monte Carlo (MC) and the Langevin micromagnetic schemes. We derive the drift and diffusion FPE terms corresponding to the MC method and show that it is analytically equivalent to the stochastic Landau-Lifshitz-Gilbert (LLG) equation of Langevin-based micromagnetics. Subsequent results such as the time-quantification factor for the Metropolis MC method can be rigorously derived from this mapping equivalence. The validity of the mapping is shown by the close numerical convergence between the MC method and the LLG equation for the case of a single magnetic particle as well as interacting arrays of particles. We also find that our Metropolis MC method is accurate for a large range of damping factors alpha, unlike previous time-quantified MC methods which break down at low alpha, where precessional motion dominates.  相似文献   

5.
We explore the combination of the extended dynamical mean field theory (EDMFT) with the GW approximation (GWA); the former sums the local contributions to the self-energies to infinite order in closed form and the latter handles the nonlocal ones to lowest order. We investigate the different levels of self-consistency that can be implemented within this method by comparing to the exact quantum Monte Carlo solution of a finite-size model Hamiltonian. We find that using the EDMFT solution for the local self-energies as input to the GWA for the nonlocal self-energies gives the best result.  相似文献   

6.
We studied the magnetic properties of an antiferromagnetic small particle of Ising spins. The particle is represented by a two-dimensional array of spins, where the coupling between spins in the core is antiferromagnetic, and its surface is modelled by a shell of spins with competing interactions, simulating a spin-glass type ordering at the surface. We investigated this model by mean-field approximation and Monte Carlo simulations. The magnetic behaviour was studied as a function of the temperature and external magnetic field. Some of the experimental findings observed in real antiferromagnetic nanoparticles, like hysteresis, shifted loops and coercive field, are obtained for this model. We showed that these properties strongly depend on the degree of surface disorder.  相似文献   

7.
In this work, we use Monte Carlo simulations with the Metropolis algorithm to study the dilution effect on the magnetic properties in a honeycomb nano-lattice. The geometry of the system is formed by two sub-lattices of 45+45 = 90 atoms consisting of the spins σ = 3/2 and S = 5/2. The ground state phase diagrams at zero absolute temperature are presented. Also, the variation of the total magnetization with reduced temperature for several values of the reduced exchange coupling are discussed. It is found that the compensation temperature depends on the reduced exchange coupling parameters. Furthermore, the dilution of the S spins affects the compensation temperature and hysteresis loops of the studied system.  相似文献   

8.
We develop a statistical-mechanical formulation for image restoration and error-correcting codes. These problems are shown to be equivalent to the Ising spin glass with ferromagnetic bias under random external fields. We prove that the quality of restoration/decoding is maximized at a specific set of parameter values determined by the source and channel properties. For image restoration in a mean-field system a line of optimal performance is shown to exist in the parameter space. These results are illustrated by solving exactly the infinite-range model. The solutions enable us to determine how precisely one should estimate unknown parameters. Monte Carlo simulations are carried out to see how far the conclusions from the infinite-range model are applicable to the more realistic two-dimensional case in image restoration.  相似文献   

9.
From its inception in the 1950s to the modern frontiers of applied statistics, Markov chain Monte Carlo has been one of the most ubiquitous and successful methods in statistical computing. The development of the method in that time has been fueled by not only increasingly difficult problems but also novel techniques adopted from physics. Here, the history of Markov chain Monte Carlo is reviewed from its inception with the Metropolis method to the contemporary state‐of‐the‐art in Hamiltonian Monte Carlo, focusing on the evolving interplay between the statistical and physical perspectives of the method.  相似文献   

10.
We consider two ferromagnetic nanoparticles coupled via long-range dipolar interactions. We model each particle by a three-dimensional array of classical spin vectors, with a central spin surrounded by a variable number of shells. Within each particle only ferromagnetic coupling between nearest neighbor spins is considered. The interaction between particles is of the dipolar type and the magnetic properties of the system is studied as a function of temperature and distance between the centers of the particles. We perform Monte Carlo simulations for particles with different number of shells, and the magnetic properties are calculated via two routes concerning the dipolar contribution: one assuming a mean-field like coupling between effective magnetic moments at the center of the particles, and other one, where we take into account interactions among all the pairs of spins, one in each particle. We show that the dipolar coupling between the particles enhances the critical temperature of the system relative to the case in which the particles are very far apart. The dipolar energy between the particles is smaller when the assumption of effective magnetic moment of the particles is used in the calculations.  相似文献   

11.
Using the Wang-Landau flat histogram Monte Carlo (FHMC) simulation technique, we were able to study two types of triangulated spherical surface models in which the two-dimensional extrinsic curvature energy is assumed in the Hamiltonian. The Gaussian bond potential is also included in the Hamiltonian of the first model, but it is replaced by a hard-wall potential in the second model. The results presented in this paper are in good agreement with the results previously reported by our group. The transition of surface fluctuations and collapsing transition were studied using the canonical Metropolis Monte Carlo simulation technique and were found to be of the first-order. The results obtained in this paper also show that the FHMC technique can be successfully applied to triangulated surface models. It is non-trivial whether the technique is applicable or not to surface models because the simulations are performed on relatively large surfaces.  相似文献   

12.
The properties of phase transitions in two-dimensional and layered systems are investigated on the basis of a discrete φ4 model by numerical and analytical methods. The only parameter a of the discrete φ4 model determines the behavior of the system and makes it possible to investigate phase transitions ranging from transitions of the displacement type (a → +0) to order-disorder type (a → +∞). The behavior of a two-dimensional system is investigated in a wide range of values of the parameter a. The temperature dependences of the squared order parameter η2(T) and the phase transition temperature T c as a function of the thickness N of the system are obtained for three characteristic values of the parameter a using the Monte Carlo method. The properties of phase transitions in the discrete φ4 model are investigated on the basis of the mean-field approximation and the independent-mode approximation. The results obtained in the numerical experiments are compared with the analytical approximations. It is shown that the mean-field approximation qualitatively describes the behavior of the phase-transition temperature T c as a function of the thickness N of the system for a wide range of values of the parameter a, and the independent-mode approximation describes quantitatively, to within 5%, the results of the numerical simulation for small values of a.  相似文献   

13.
The single-spin-flip Metropolis algorithm is applied to an Ising ferromagnet with mixed spins ofS=1/2 andS=1 on the square lattice. The critical temperature obtained from our Monte Carlo simulation is very close to the high temperature series expansion result. The finite size scaling results for the exponents yield the two dimensional Ising values, which are in good agreement with those suggested by the universality hypothesis.  相似文献   

14.
任娟  张宁超  刘萍萍 《计算物理》2019,36(6):749-756
采用基于Metropolis蒙特卡罗和Reverse蒙特卡罗的杂化逆向蒙特卡罗方法,构建碳气凝胶的微孔结构模型,根据碳气凝胶的介孔尺寸构建介孔模型.设计不同形状、不同孔径的介孔模型,使用巨正则蒙特卡罗方法详细模拟在298 K和77 K下的储氢量.结果显示,在77 K时,所设计的碳气凝胶的储氢量几乎是室温下的4倍.在77 K,100 bar时,储氢量最高可达到11.12 wt%和45.68 g·L-1.  相似文献   

15.
A new Monte Carlo atmospheric radiative transfer model is presented which is designed to support the interpretation of UV/vis/near-IR spectroscopic measurements of scattered Sun light in the atmosphere. The integro differential equation describing the underlying transport process and its formal solution are discussed. A stochastic approach to solve the differential equation, the Monte Carlo method, is deduced and its application to the formal solution is demonstrated. It is shown how model photon trajectories of the resulting ray tracing algorithm are used to estimate functionals of the radiation field such as radiances, actinic fluxes and light path integrals. In addition, Jacobians of the former quantities with respect to optical parameters of the atmosphere are analyzed. Model output quantities are validated against measurements, by self-consistency tests and through inter comparisons with other radiative transfer models.  相似文献   

16.
The phase diagram of Z(N) lattice gauge theories is examined in the mean-field approach. It is shown how large non-perturbative fluctuations around the mean-field may naturally occur in these theories. When this happens, a massless phase which is absent in the mean-field approximation is dynamically generated. An order parameter which characterizes the Coulomb to Higgs phase transition is introduced. The predictions for the values of the critical coupling for this transition are in excellent agreement with the Monte Carlo data in four dimensions.  相似文献   

17.
Dipolar coupling in the body-centered tetragonal crystal of Ising spins that is a prototype of the Mn12Ac molecular magnet favors ferromagnetic ordering below the mean-field Curie temperature 0.71 K. With the help of Monte Carlo on crystals of up to one million Mn12 molecules, it is shown that ordering occurs at 0.36 K in elongated crystals. The resulting state is split into ferromagnetic domains with domain walls preferring the diagonal orientation. Domain walls are pinned by the lattice at low temperatures. Making the crystal shorter makes domains finer and smoothens out the singularity at the ordering transition, decreasing the susceptibility in the domain state.  相似文献   

18.
In this paper, we study the effect of different physical parameters on the critical magnetic behavior of the new full Heusler CoXO2 (X=Cu or Mn) alloys, using Monte Carlo simulations (MCS) under the Metropolis algorithm.To reach this goal, we have proposed a Hamiltonian describing and modeling these compounds. The CoCuO2 alloy is formed with the spin variables of cobalt Co atoms (Si=±2, ±1 or 0) and the copper Cu atoms modeled by the spins σi=±1/2. While, the compound CoMnO2 is modeled the spins of Co atoms (Si=±2, ±1 or 0) and the Mn atoms represented by the spins (Qi=±5/2, ±3/2 or ±1/2).In fact, we have studied and discussed the ground state phase diagrams of the new Heusler alloys CoXO2(X=Cu or Mn) in different physical parameters. Moreover, we have presented and discussed the thermal behavior of the total magnetizations and the magnetic susceptibilities, for non-null temperature values.To complete this study, we have elaborated and discussed the hysteresis loops of the studied alloys when fixing the temperature values.  相似文献   

19.
20.
We study the effect of quantum fluctuations in an Ising spin system on a scale-free network of degree exponent γ>5 using a quantum Monte Carlo simulation technique. In our model, one can adjust the magnitude of the magnetic field perpendicular to the Ising spin direction and can therefore control the strength of quantum fluctuations for each spin. Our numerical analysis shows that quantum fluctuations reduce the transition temperature Tc of the ferromagnetic-paramagnetic phase transition. However, the phase transition belongs to the same mean-field type universality class both with and without the quantum fluctuations. We also study the role of hubs by turning on the quantum fluctuations exclusively at the nodes with the most links. When only a small number of hub spins fluctuate quantum mechanically, Tc decreases with increasing magnetic field until it saturates at high fields. This effect becomes stronger as the number of hub spins increases. In contrast, quantum fluctuations at the same number of “non-hub” spins do not affect Tc. This implies that the hubs play an important role in maintaining order in the whole network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号