首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simple wet chemical method involving only ultrasonic processing in dilute ceric sulfate (CS) was used to functionalize carbon nanotubes (CNTs). Unexpectedly, single-walled and multiwalled carbon nanotubes (SWCNTs and MWCNTs) were cut, oxidized, and disintegrated by sonication in 0.1 N CS for 2-5 h. Transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction spectroscopy (XRD), Raman scattering, and photoacoustic Fourier transform infrared spectroscopy (FTIR) were used to probe wall damage during the chemical processing. Cyclic voltammetry and impedance spectroscopy were used to evaluate the conductivity of the CS-treated CNTs. This one-step process resulted in the destruction of SWCNTs to produce nonconducting amorphous carbon. MWCNTs were oxidized and converted to graphitic materials and amorphous carbon with retained conductivity.  相似文献   

2.
Carbon nanotubes have been proposed as support materials for numerous applications, including the development of DNA sensors. One of the challenges is the immobilization of DNA or other biological molecules on the sidewall of carbon nanotubes. This paper introduces a new fabrication of DNA-carbon nanotubes particles using the layer-by-layer (LBL) technique on single-walled carbon nanotubes (SWCNTs). Poly(diallyldimethylammonium) (PDDA), a positively charged polyelectrolyte, and DNA as a negatively charged counterpart macromolecule are alternatively deposited on the water-soluble oxidized SWCNTs. Pure DNA/PDDA/SWCNTs particles can be prepared and separated by simple unltracentrifugation. The characterization of DNA/PDDA/SWCNTs particles was carried out by scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible spectroscopy, Raman spectroscopy, and thermogravimetric analysis (TGA). An electrode modified by the DNA/PDDA/SWCNTs particles shows a dramatic change of the electrochemical signal in solutions of tris(2,2'-bipyridyl)ruthenium(II) ((Ru(bpy)(3)2+) as a reporting redox probe. A preliminary application of the DNA-modified carbon nanotubes in the development of DNA sensors used in the investigation of DNA damage by nitric oxide is presented.  相似文献   

3.
Raman spectroscopy was applied to study the adsorbed hydrogen phase in porous materials at room temperature and under cryogenic conditions. A comparison between the Raman spectra of H(2) molecules adsorbed on single walled carbon nanotubes and on a Cu-based metal-organic framework reveals that the interaction strength for the adsorption of molecular hydrogen is very similar in these materials. In both cases the small perturbation of the Raman spectrum of hydrogen indicates that adsorption takes place without any evident charge transfer between H(2) and the adsorbent. Additionally for single walled carbon nanotubes at least two types of adsorption sites could be identified by Raman spectroscopy.  相似文献   

4.
Two multiwalled carbon nanotube hybrids have been prepared: (a) multiwalled carbon nanotubes (MWCNTs) functionalized with amphiphilic poly(propyleneimine) dendrimer (APPI), viz. MWCNTs-APPI, and (b) silver nanoparticles (AgNPs)-deposited multiwalled carbon nanotubes functionalized with an amphiphilic poly(propyleneimine) dendrimer (MWCNTs-APPI-AgNPs). The degree of covalent functionalization of APPI in MWCNTs and deposition of AgNPs in MWCNTs-APPI were examined by Fourier transform infrared spectroscopy, zeta potential, scanning and high-resolution transmission electron microscopy, energy-dispersive spectroscopy, thermogravimetric analysis, and Raman spectroscopy. The amount of APPI functionalized on MWCNTs determined by thermal gravimetric analysis was about 67% which enables an effective dispersability in aqueous and organic solvents without sonication and these solutions were stable for 6 months without undergoing aggregation of MWCNTs. The electronic properties of the hybrid materials were not altered drastically as verified by the Raman studies. The antimicrobial activities of MWCNTs-APPI and MWCNTs-APPI-AgNPs against three different bacteria, viz. Bacillus subtilis, Staphylococcus aureus, and Escheriachia coli illustrated excellent activity.  相似文献   

5.
Carbon nanotubes have been proposed as advanced metal catalyst support for electrocatalysis. In this work, different carbon support materials including single-walled carbon nanotubes (SWNTs), multi-walled carbon nanotubes (MWNTs) and XC-72 carbon black, were compared in terms of their electrochemical properties using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The SWNTs is found to exhibit the highest accessible surface area in electrochemical reactions and the lowest charge transfer resistance at the SWNTs/electrolytes. These carbon materials are then loaded with varying amount of Pt by the electrodeposition technique to prepare carbon supported Pt catalysts. Electrochemical measurements of methanol oxidation reveal that the SWNTs supported Pt catalyst exhibits the highest mass activity (mA/mg-Pt). In comparison with Pt-XC-72 and Pt-MWNTs, the remarkably enhanced electrocatalytic activity of the Pt-SWNTs maybe attributed to a higher dispersion and utilization of the Pt particles, which are directly related to the electrochemical characteristics of SWNTs. The high concentration of oxygen-containing functional groups, high accessible surface area, low charge transfer resistance at the carbon/electrolyte interfaces can be important for the Pt dispersing and strong metal-support interaction in the Pt-SWNTs catalyst.  相似文献   

6.
In this article, we show that the redox properties of the regulatory peptide L ‐glutathione are affected by the presence of nickel oxide impurities within single‐walled carbon nanotubes (SWCNTs). Glutathione is a powerful antioxidant that protects cells from oxidative stress by removing free radicals and peroxides. We show that the L ‐cysteine moiety in L ‐glutathione is responsible for the susceptibility to oxidation by metallic impurities present in the carbon nanotubes. These results have great significance for assessing the toxicity of carbon‐nanotube materials. The SWCNTs were characterized by Raman spectroscopy, high‐resolution X‐ray photoelectron spectroscopy, transmission electron microscopy, and energy dispersive X‐ray spectroscopy.  相似文献   

7.
Soft materials or gels are new interesting materials resulting from the combination of carbon nanotubes with ionic liquids. However, it should be noted that not all ionic liquid/carbon nanotubes combinations lead to the formation of gels. In fact, this requires using an optimum concentration of CNTs known as “critical gel concentration” (CGC) in the mixture. Up to now, this critical concentration has been determined by means of rheological measurements or by observing a change of a physical property in the new material such as density. On the basis of the high stability of gels in solvents, owing to the presence of carbon nanotubes, this paper reports for the first time a simple and fast method to determine the critical gel concentration for the formation of soft materials by means of fluorescence measurements. We have determined the critical gel concentration of four gels obtained by the combination of three different types of multi walled carbon nanotubes and one single walled carbon nanotubes with the ionic liquid 1-hexyl 3-methylimidazolium hexafluorophosphate. The main characteristics of carbon nanotubes and gels resulting of them were established by Raman spectroscopy. The proposed methodology is presented as an alternative to traditional complex rheological measurements.  相似文献   

8.
Functionalized carbon nanotubes containing isocyanate groups can extend the nanotube chemistry, and may promote their many potential applications such as in polymer composites and coatings. This paper describes a facile method to prepare functionalized carbon nanotubes containing highly reactive isocyanate groups on its surface via the reaction between toluene 2,4-diisocyanate and carboxylated carbon nanotubes. Fourier-transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed that reactive isocyanate groups were covalently attached to carbon nanotubes. The content of isocyanate groups were determined by chemical titration and thermogravimetric analysis (TGA).  相似文献   

9.
《Chemical physics letters》2001,331(1-2):27-32
Composite materials, based on single-walled carbon nanotubes and a poly(p-phenylene vinylene) derivative, show an interaction between the components capable of solubilising the nanotubes, which has not been otherwise achieved. Here these materials are characterised by electron microscopy, and optical and vibrational spectroscopy. The spectroscopic behaviour of the polymer is seen to be dramatically affected, which is attributed to conformational changes due to the effect of the nanotubes.  相似文献   

10.
The production of graphene from various sources has garnered much attention in recent years with the development of methods that range from “bottom‐up” to “top‐down” approaches. The top‐down approach often requires thermal treatment to obtain a few‐layered and lowly oxygenated graphene sheets. Herein, we demonstrate the production of graphene through oxidation and thermal‐reduction/exfoliation of two sources of differently orientated graphene sheets: multiwalled carbon nanotubes (MWCNTs) and stacked graphene nanofibers (SGNFs). These two carbon‐nanofiber‐like materials have similar axial (length: 5–9 μm) and lateral dimensions (diameter: about 100 nm). We demonstrate that, whereas SGNFs exfoliate along the lateral plane between adjacent graphene sheets, carbon nanotubes exfoliate along its longitudinal axis and leads to opening of the carbon nanotubes owing to the built‐in strain. Subsequent thermal exfoliation leads to graphene materials that have, despite the fact that their parent materials exhibited similar dimensions, dramatically different proportions and, consequently, materials properties. Graphene that was prepared from MWCNTs exhibited dimensions of about 5000×300 nm, whereas graphene that was prepared from SGNFs exhibited sheets with dimensions of about 50×50 nm. The density of defects and oxygen‐containing groups on these materials are dramatically different, as are the electrochemical properties. We performed morphological, structural, and electrochemical characterization based on TEM, SEM, high‐resolution X‐ray photoelectron spectroscopy, Raman spectroscopy, and cyclic voltammetry (CV) analysis on the stepwise conversion of the target source into the exfoliated graphene. Morphological and structural characterization indicated the successful chemical and thermal treatment of the materials. Our findings have shown that the orientation of the graphene sheets in starting materials has a dramatic influence on their chemical, material, and electrochemical properties.  相似文献   

11.
Vertically aligned multi-walled carbon nanotube arrays grown on quartz substrate are obtained by co-pyrolysis of xylene and ferrocene at 850 oC in a tube furnace. Raman spectroscopy and high resolution transmission electron microscopy measurements show that the single-walled carbon nanotubes are only present on top of vertically aligned multi-walled carbon nanotube arrays. It has been revealed that isolated single-walled carbon nanotubes are only present in those floating catalyst generated materials. It thus suggests that the single-walled carbon nanotubes here are also generated by floating catalyst. Vertically alignedcarbon nanotube arrays on the quartz substrate have shown good orientation and good graphitization. Meanwhile, to investigate the growth mechanism, two bi-layers carbon nan-otube films with di erent thickness have been synthesized and analyzed by Raman spectroscopy. The results show that the two-layer vertically aligned carbon nanotube films grow “bottom-up”. There are distinguished Raman scattering signals for the second layer itself, surface of the first layer, interface between the first and second layer, side wall and bottom surface. It indicates that the obtained carbon nanotubes follow the base-growth mechanism, and the single-walled carbon nanotubes grow from their base at the growth beginning when iron catalyst particles have small size. Those carbon nanotubes with few walls (typically <5 walls) have similar properties, which also agree with the base-growth mechanism.  相似文献   

12.
Effect of Ar(+) ion irradiation on the structure of pristine and fluorinated single-wall carbon nanotubes (SWCNTs) was examined using transmission electron microscopy (TEM), Raman, and x-ray photoelectron spectroscopy (XPS). The TEM analysis revealed retention of tubular structures in both irradiated samples while Raman spectroscopy and XPS data indicated a partial destruction of nanotubes and formation of oxygen-containing groups on the nanotube surface. From similarity of electronic states of carbon in the irradiated pristine and fluorinated SWCNTs observed by XPS, it was suggested that defluorination of nanotubes proceeded with breaking of C-F bonds.  相似文献   

13.
Double‐walled carbon nanotubes (DWCNTs) are materials in high demand due to their superior properties. However, it is very challenging to prepare DWCNTs samples of high purity. In particular, the removal of single‐walled carbon nanotubes (SWCNTs) contaminants is a major problem. Here, a procedure for a selective removal of thin‐diameter SWCNTs from their mixtures with DWCNTs by lithium vapor treatment is investigated. The results are evaluated by Raman spectroscopy and in situ Raman spectroelectrochemistry. It is shown that the amount of SWCNTs was reduced by about 35 % after lithium vapor treatment of the studied SWCNTs–DWCNTs mixture.  相似文献   

14.
Understanding of oxidative processes such as solution-phase ozonolysis in multiwalled carbon nanotubes (MWNTs) is of fundamental importance in devising applications of these tubes as components in composite materials, as well as for development of cutting and filling protocols. We present here an evaluation of various spectroscopic tools to study the structure and composition of functionalized nanotubes. We demonstrate near-edge X-ray absorption fine structure (NEXAFS) spectroscopy as a particularly useful and effective technique for studying the surface chemistry of carbon nanotubes.  相似文献   

15.
MoS2 sheathed carbon nanotubes have been successfully synthesized using a hydrothermal route under controlled conditions. The resultant material was studied by XRD, EDS, HRTEM, and Raman spectroscopy. Advantages of the preparation presented here compared to other methods are: a) lower reaction temperature, b) high yield of sheathed nanotubes including ends and full body, c) simple process with non-toxic materials, and d) no damage inflicted to nanotubes.  相似文献   

16.
The present article demonstrates a simple, eco-friendly route for the fabrication of carbon nanotubes (CNTs) with different morphologies, including the fascinating bamboo-like structures without complex catalyst/support preparation procedures. A thermal chemical vapor deposition (CVD) technique that utilized natural pozzolan supports and a solid carbon source, that is, a mixture of camphor and ferrocene in a weight ratio of 20:1, was carried out at different temperatures where the ferrocene played also the role of catalyst. The pozzolan chemical composition and mineral identification were determined by energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. The morphology of the fabricated CNTs was studied via scanning and transmission electron microscopies (SEM and TEM). It was revealed that both conventional tubular and bamboo-like nanotubes grow at 750 °C while the bamboo-like morphology prevails at 850 °C. The better nanostructure uniformity at higher deposition temperature was accompanied by an improved nanotube graphitization degree that was verified by Raman spectroscopy. Yet, the reduction of the CNTs production yield was recorded by thermogravimetric analysis (TGA). The experimental data are interpreted and discussed as an interplay between the CNTs processing temperature, morphology and growth mechanism. Thus, the growth of either tubular or bamboo-like nanostructures is suggested to be ruled by the competitive surface and bulk diffusions of carbon onto and into the catalyst surface. The growth depends on the size of catalyst nanoparticles sintered at different temperatures. The favorable role of the pozzolan supporting materials in the formation of bamboo-like tubes is emphasized.  相似文献   

17.
Using multiwalled carbon nanotubes (MWNTs) as templates, noble metal (Au, Ag, Pt or Pd) nanoparticles (NPs) were fabricated in situ by electrochemistry with a diameter of 40–60 nm. Further, catalytic behaviors of these composite materials were investigated. Experiments showed that such carbon nanotubes decorated with Pd NPs modified glassy carbon electrodes exhibited higher electrocatalytic ability to some molecules such as evolution of hydrogen, reduction of oxygen and oxidation of ascorbic acid. Atomic force microscopy, X‐ray photoelectron spectroscopy and cyclic voltammetry were used to characterize the film formation and their properties.  相似文献   

18.
The unique physical and electrical properties of carbon nanotubes make them an exciting material for applications in various fields such as bioelectronics and biosensing. Due to the poor water solubility of carbon nanotubes, functionalization for such applications has been a challenge. Of particular need are functionalization methods for integrating carbon nanotubes with biomolecules and constructing novel hybrid nanostructures for bionanoelectronic applications. We present a novel method for the fabrication of dispersible, biocompatible carbon nanotube-based materials. Multiwalled carbon nanotubes (MWCNTs) are covalently modified with primary amine-bearing phospholipids in a carbodiimide-activated reaction. These modified carbon nanotubes have good dispersibility in nonpolar solvents. Fourier transform infrared (FTIR) spectroscopy shows peaks attributable to the formation of amide bonds between lipids and the nanotube surface. Simple sonication of lipid-modified nanotubes with other lipid molecules leads to the formation of a uniform lipid bilayer coating the nanotubes. These bilayer-coated nanotubes are highly dispersible and stable in aqueous solution. Confocal fluorescence microscopy shows labeled lipids on the surface of bilayer-modified nanotubes. Transmission electron microscopy (TEM) shows the morphology of dispersed bilayer-coated MWCNTs. Fluorescence quenching of lipid-coated MWCNTs confirms the bilayer configuration of the lipids on the nanotube surface, and fluorescence anisotropy measurements show that the bilayer is fluid above the gel-to-liquid transition temperature. The membrane protein α-hemolysin spontaneously inserts into the MWCNT-supported bilayer, confirming the biomimetic membrane structure. These biomimetic nanostructures are a promising platform for the integration of carbon nanotube-based materials with biomolecules.  相似文献   

19.
In this work, we reported the synergistic effect of functional carbon nanotubes (CNTs) and graphene oxide (GO) on the anticorrosion performance of epoxy coating. For this purpose, the GO and CNTs were firstly modified by the 3‐aminophenoxyphthalonitrile to realize the nitrile functionalized graphene oxides (GO‐CN) and carbon nanotubes (CNTs‐CN). As modified GO‐CN and CNTs‐CN were characterized and confirmed by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and gravimetric analyzer. It was found that about 19 and 24 wt% of 3‐aminophenoxyphthalonitrile were grafted onto the surface of the GO and CNTs, respectively. The electrochemical impedance spectroscopy results showed that the GO‐CN&CNTs‐CN hybrid materials exhibit a remarkable superiority in enhancing the anticorrosion performance of epoxy coatings. Significant synergistic effect of the lamellar structural GO‐CN and CNTs‐CN on the anticorrosion performance of epoxy composite coatings was designed. Besides, the epoxy coating with 1 wt% of the GO‐CN&CNTs‐CN hybrid exhibited the best anticorrosion performance, in which the impedance showed the largest one (immersion in 3.5 wt% of NaCl solution for 168 hr). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Bilirubin adsorption on carbon nanotube surfaces has been studied to develop a new adsorbent in the plasma apheresis. Powder-like carbon nanotubes were first examined under various adsorption conditions such as temperatures and initial concentrations of bilirubin solutions. The adsorption capacity was measured from the residual concentrations of bilirubin in the solution after the adsorption process using a visible absorption spectroscopy. We found that multi-walled carbon nanotubes (MWCNTs) exhibit greater adsorption capacity for bilirubin molecules than that of single-walled carbon nanotubes (SWCNTs). To guarantee the safety of the adsorbents, we fabricated carbon nanotube sheets in which leakage of CNTs to the plasma is suppressed. Since SWCNTs are more suitable for robust sheets, a complex sheet consisting of SWCNTs as the scaffolds and MWCNTs as the efficient adsorbents. CNT/polyaniline complex sheets were also fabricated. Bilirubin adsorption capacity of CNTs has been found to be much larger than that of the conventional materials because of their large surface areas and large adsorption capability for polycyclic compound molecules due to their surface structure similar to graphite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号