首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Capacities of the goldfish for intensity discrimination were studied using classical respiratory conditioning and a staircase psychophysical procedure. Physiological studies on single saccular (auditory) nerve fibers under similar stimulus conditions helped characterize the dimensions of neural activity used in intensity discrimination. Incremental intensity difference limens (IDLs in dB) for 160-ms increments in continuous noise, 500-ms noise bursts, and 500-ms, 800-Hz tone bursts are 2 to 3 dB, are independent of overall level, and vary with signal duration according to a power function with a slope averaging - 0.33. Noise decrements are relatively poorly detected and the silent gap detection threshold is about 35 ms. The IDLs for increments and decrements in an 800-Hz continuous tone are about 0.13 dB, are independent of duration, and are level dependent. Unlike mammalian auditory nerve fibers, some goldfish saccular fibers show variation in recovery time to tonal increments and decrements, and adaptation to a zero rate. Unit responses to tone increments and decrements show rate effects generally in accord with previous observations on intracellular epsp's in goldfish saccular fibers. Neurophysiological correlates of psychophysical intensity discrimination data suggest the following: (1) noise gap detection may be based on spike rate increments which follow gap offset; (2) detection of increments and decrements in continuous tones may be determined by steep low-pass filtering in peripheral neural channels which enhance the effects of spectral "splatter" toward the lower frequencies; (3) IDLs for pulsed signals of different duration can be predicted from the slopes of rate-intensity functions and spike rate variability in individual auditory nerve fibers; and (4) at different sound pressure levels, different populations of peripheral fibers provide the information used in intensity discrimination.  相似文献   

2.
Thresholds were measured for the detection of 20-ms sinusoids, with frequencies 500, 4000, or 6500 Hz, presented in bursts of bandpass noise of the same duration and centered around the signal frequency. A range of noise levels from 35 to 80 dB SPL was used. Noise at different center frequencies was equated in terms of the total noise power in an assumed auditory filter centered on the signal frequency. Thresholds were expressed as the signal levels, relative to these noise levels, necessary for subjects to achieve 71% correct. For 500-Hz signals, thresholds were about 5 dB regardless of noise level. For 6500-Hz signals, thresholds reached a maximum of 14 dB at intermediate noise levels of 55-65 dB SPL. For 4000-Hz signals, a maximum threshold of 10 dB was observed for noise levels of 45-55 dB SPL. When the bandpass noises were presented continuously, however, thresholds for 6500-Hz, 20-ms signals remained low (about 1 dB) and constant across level. These results are similar to those obtained for the intensity discrimination of brief tones in bandstop noise [R. P. Carlyon and B. C. J. Moore, J. Acoust. Soc. Am. 76, 1369-1376 (1984); R. P. Carlyon and B. C. J. Moore, J. Acoust. Soc. Am. 79, 453-460 (1986)].  相似文献   

3.
Frequency difference limens for pure tones preceded by a forward masker or followed by a backward masker were obtained across a wide range of signal levels. Relkin and Doucet [Hear. Res. 55, 215-222 (1991)] have shown that at a masker-signal delay of 100 ms, the thresholds of high-SR (spontaneous rate) auditory-nerve fibers are recovered, while the low-SR fiber thresholds are not. Therefore, forward-masked frequency discrimination potentially offers a method to investigate the role of low-SR fibers in the coding of frequency. It has been shown that when an intense forward masker is presented 100 ms before a pure-tone signal, intensity difference limens are elevated for mid-level signals [Zeng et al., Hear. Res. 55, 223-230 (1991)]. However, Plack and Viemeister [J. Acoust. Soc. Am. 92, 3097-3101 (1992)] have shown that a similar elevation in the intensity difference limen is obtained under conditions of backward masking, where selective adaptation of the auditory neurons would not be expected to occur. A condition of backward-masked frequency discrimination was therefore included to investigate the role of interference resulting from adding additional stimuli to a discrimination task. For signals at 1000 and 6000 Hz, there was no effect of a forward masker upon frequency difference limens. For the backward-masked conditions, an elevation of the frequency difference limen was observed at all signal levels, demonstrating that the effects of forward and backward maskers upon frequency discrimination are dissimilar and suggesting that cognitive effects are present in backward-masked discrimination tasks.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
This paper extends previous research on listeners' abilities to discriminate the details of brief tonal components occurring within sequential auditory patterns (Watson et al., 1975, 1976). Specifically, the ability to discriminate increments in the duration delta t of tonal components was examined. Stimuli consisted of sequences of ten sinusoidal tones: a 40-ms test tone to which delta t was added, plus nine context tones with individual durations fixed at 40 ms or varying between 20 and 140 ms. The level of stimulus uncertainty was varied from high (any of 20 test tones occurring in any of nine factorial contexts), through medium (any of 20 test tones occurring in ten contexts), to minimal levels (one test tone occurring in a single context). The ability to discriminate delta t depended strongly on the level of stimulus uncertainty, and on the listener's experience with the tonal context. Asymptotic thresholds under minimal uncertainty approached 4-6 ms, or 15% of the duration of the test tones; under high uncertainty, they approached 40 ms, or 10% of the total duration of the tonal sequence. Initial thresholds exhibited by inexperienced listeners are two-to-four times greater than the asymptotic thresholds achieved after considerable training (20,000-30,000 trials). Isochronous sequences, with context tones of uniform, 40-ms duration, yield lower thresholds than those with components of varying duration. The frequency and temporal position of the test tones had only minor effects on temporal discrimination. It is proposed that a major determinant of the ability to discriminate the duration of components of sequential patterns is the listener's knowledge about "what to listen for and where." Reduced stimulus uncertainty and extensive practice increase the precision of this knowledge, and result in high-resolution discrimination performance. Increased uncertainty, limited practice, or both, would allow only discrimination of gross changes in the temporal or spectral structure of the sequential patterns.  相似文献   

5.
The purpose of this study was to compare the role of frequency selectivity in measures of auditory and vibrotactile temporal resolution. In the first experiment, temporal modulation transfer functions for a sinusoidally amplitude modulated (SAM) 250-Hz carrier revealed auditory modulation thresholds significantly lower than corresponding vibrotactile modulation thresholds at SAM frequencies greater than or equal to 100 Hz. In the second experiment, auditory and vibrotactile gap detection thresholds were measured by presenting silent gaps bounded by markers of the same or different frequency. The marker frequency F1 = 250 Hz preceded the silent gap and marker frequencies after the silent gap included F2 = 250, 255, 263, 310, and 325 Hz. Auditory gap detection thresholds were lower than corresponding vibrotactile thresholds for F2 markers less than or equal to 263 Hz, but were greater than the corresponding vibrotactile gap detection thresholds for F2 markers greater than or equal to 310 Hz. When the auditory gap detection thresholds were transformed into filter attenuation values, the results were modeled well by a constant-percentage (10%) bandwidth filter centered on F1. The vibrotactile gap detection thresholds, however, were independent of marker frequency separation. In a third experiment, auditory and vibrotactile rate difference limens (RDLs) were measured for a 250-Hz carrier at SAM rates less than or equal to 100 Hz. Auditory RDLs were lower than corresponding vibrotactile RDLs for standard rates greater than 10 Hz. Combination tones may have confounded auditory performance for standard rates of 80 and 100 Hz. The results from these experiments revealed that frequency selectivity influences auditory measures of temporal resolution, but there was no evidence of frequency selectivity affecting vibrotactile temporal resolution.  相似文献   

6.
Intensity difference limens (DLs) were measured over a wide intensity range for 200-ms, 1-kHz gated tones and for 200-ms increments in continuous 1-kHz tones. Magnitude estimates also were obtained for the gated tones over a comparable intensity range. The discrimination data are in general agreement with those from earlier studies but they extend them by showing: (1) good discrimination for gated tones over at least a 115-dB dynamic range; (2) a slight increase in the relative DL (delta I/I) as intensity increases above 95 dB SPL; (3) smaller DLs for increments than for gated tones, with the difference approximately independent of intensity; (4) negligible "negative masking" when thresholds are expressed as intensity differences (delta I). For two of the three subjects, magnitude estimates do not conform to a single-exponent power law for suprathreshold intensities. Over the middle range of intensities where a single exponent is appropriate, the value of the exponent is less than 0.1 for all subjects.  相似文献   

7.
Difference limens (DLs) for linear frequency transitions using a 1.0-kHz pulsed-tone standard were obtained from 6- to 9-month-old human infants in a series of three experiments. A repeating standard "yes-no" operant headturning technique and an adaptive staircase (tracking) procedure were used to obtain difference limens from a total of 71 infants. The DLs for 300-ms upward and downward linear frequency sweeps were approximately 3%-4% when the repeating standard was an unmodulated 1.0-kHz pulsed tone of 300-ms duration. These DLs for frequency sweeps were not significantly different from DLs for frequency increments and decrements using 330-ms pulsed tones [J. M. Sinnott and R. N. Aslin, J. Acoust. Soc. Am. 78, 1986-1992 (1985)]. The DLs for frequency sweeps of 50 ms appended to the beginning or the end of a 250-ms unmodulated 1.0-kHz tone were approximately 6%-7%. This greater DL for brief frequency sweeps was confirmed by varying the duration but not the extent of the sweep. Finally, DLs were greater than 50% when the repeating standard was a 50-ms rising or falling frequency sweep appended to the beginning of a 250-ms unmodulated 1.0-kHz tone. These results suggest that rapid frequency transitions are much more difficult to discriminate from frequency transitions of the same category (rising or falling) than from either a frequency transition of the opposite category (falling or rising) or an unmodulated tone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Psychometric functions for level discrimination   总被引:1,自引:0,他引:1  
To determine the form of psychometric functions for 2I,2AFC level discrimination (commonly called intensity discrimination), ten increment levels were presented in random order within blocks of 100 trials. Stimuli were chosen to encompass a wide range of conditions and difference limens: eight 10-ms tones had frequencies of 0.25, 1, 8, or 14 kHz and levels of 30, 60, or 90 dB SPL; two 500-ms stimuli also were tested: a 1-kHz tone at 90 dB SPL and broadband noise at 63 dB SPL. For each condition, at least 20 blocks were presented in mixed order. Results for five normal listeners show that the sensitivity, d', is nearly proportional to delta L (= 20 log [(p + delta p)/p], where p is sound pressure) over the entire range of difference limens. When d' is plotted against Weber fractions for sound pressure, delta p/p, or intensity, delta I/I, exponents of the best-fitting power functions decrease with increasing difference limens and are less than unity for large difference limens. The approximately proportional relation between d' and delta L agrees with modern multichannel models of level discrimination and with psychometric functions derived for single auditory-nerve fibers. The results also support the notion that the difference limen, expressed as delta LDL and plotted on a logarithmic scale, is an appropriate representation of performance in level-discrimination experiments.  相似文献   

9.
Experiment 1 measured pure-tone frequency difference limens (DLs) at 1 and 4 kHz. The stimuli had two steady-state portions, which differed in frequency for the target. These portions were separated by a middle section of varying length, which consisted of a silent gap, a frequency glide, or a noise burst (conditions: gap, glide, and noise, respectively). The noise burst created an illusion of the tone continuing through the gap. In the first condition, the stimuli had an overall duration of 500 ms. In the second condition, stimuli had a fixed 50-ms middle section, and the overall duration was varied. DLs were lower for the glide than for the gap condition, consistent with the idea that the auditory system contains a mechanism specific for the detection of dynamic changes. DLs were generally lower for the noise than for the gap condition, suggesting that this mechanism extracts information from an illusory glide. In a second experiment, pure-tone frequency direction-discrimination thresholds were measured using similar stimuli as for the first experiment. For this task, the type of the middle section hardly affected the thresholds, suggesting that the frequency-change detection mechanism does not facilitate the identification of the direction of frequency changes.  相似文献   

10.
Results of experiments on the detection of silent intervals, or gaps, in broadband noise are reported for normal-hearing listeners. In some preliminary experiments, a gap threshold of about 2 ms was measured. This value was independent of the duration of the noise burst, variation of the noise level on each presentation, or the temporal position of the gap within the noise burst. In the main experiments, the thresholds for partial decrements in the noise waveform as well as brief increments were determined. As predicted by a model that assumes a single fixed peak-to-valley detection ratio, thresholds for increments are slightly higher than thresholds for decrements when the signal is measured as the change in rms noise level. A first-order model describes the temporal properties of the auditory system as a low-pass filter with a 7- to 8-ms time constant. Temporal modulation transfer functions were determined for the same subjects, and the estimated temporal parameters agreed well with those estimated from the gap detection data. More detailed modeling was carried out by simulating Viemeister's three-stage temporal model. Simulations, using an initial stage bandwidth of 4000 Hz and a 3-ms time constant for the low-pass filter, generate data that are very similar to those obtained from human subjects in both modulation and gap detection.  相似文献   

11.
Detection of simple and complex tones in the presence of a 64-dB SPL uniformly masking noise was examined in two experiments. In both experiments, the signals were either pure tones (220, 1100, or 3850 Hz) or an 18-tone complex consisting of equally intense components between 110 and 7260 Hz. In experiment 1, psychometric functions were obtained for detection in a 2I, 2AFC task. Results for eight normal listeners show that the psychometric functions are parallel for simple and complex tones. As expected, the masked thresholds for the pure tones are 43-44 dB SPL independent of frequency; the masked threshold for the complex tone is about 37 dB SPL per tone. These results indicate that the simultaneous presence of signal energy in many auditory channels aids detection. In experiment 2, psychometric functions were obtained with all four signals presented in random order within a block of trials. Results for four normal listeners show that the psychometric functions are parallel to one another and to those obtained in experiment 1. The thresholds are elevated to about 46 dB for the pure tones and to 40.5 dB for the complex tone. These results are nearly, but not quite, consistent with a multiband energy-detector model using an optimum decision rule; it appears that listeners may only make an unweighted sum of decision variables across an optimum selection of channels.  相似文献   

12.
The relationship between auditory perception and vocal production has been typically investigated by evaluating the effect of either altered or degraded auditory feedback on speech production in either normal hearing or hearing-impaired individuals. Our goal in the present study was to examine this relationship in individuals with superior auditory abilities. Thirteen professional musicians and thirteen nonmusicians, with no vocal or singing training, participated in this study. For vocal production accuracy, subjects were presented with three tones. They were asked to reproduce the pitch using the vowel /a/. This procedure was repeated three times. The fundamental frequency of each production was measured using an autocorrelation pitch detection algorithm designed for this study. The musicians' superior auditory abilities (compared to the nonmusicians) were established in a frequency discrimination task reported elsewhere. Results indicate that (a) musicians had better vocal production accuracy than nonmusicians (production errors of 1/2 a semitone compared to 1.3 semitones, respectively); (b) frequency discrimination thresholds explain 43% of the variance of the production data, and (c) all subjects with superior frequency discrimination thresholds showed accurate vocal production; the reverse relationship, however, does not hold true. In this study we provide empirical evidence to the importance of auditory feedback on vocal production in listeners with superior auditory skills.  相似文献   

13.
Gross variations of the speech amplitude envelope, such as the duration of different segments and the gaps between them, carry information about prosody and some segmental features of vowels and consonants. The amplitude envelope is one parameter encoded by the Tickle Talker, an electrotactile speech processor for the hearing impaired which stimulates the digital nerve bundles with a pulsatile electric current. Psychophysical experiments measuring the duration discrimination and identification, gap detection, and integration times for pulsatile electrical stimulation are described and compared with similar auditory measures for normal and impaired hearing and electrical stimulation via a cochlear implant. The tactile duration limen of 15% for a 300-ms standard was similar to auditory measures. Tactile gap detection thresholds of 9 to 20 ms were larger than for normal-hearing but shorter than for some hearing-impaired listeners and cochlear implant users. The electrotactile integration time of about 250 ms was shorter than previously measured tactile values but longer than auditory integration times. The results indicate that the gross amplitude envelope variations should be conveyed well by the Tickle Talker. Short bursts of low amplitude are the features most likely to be poorly perceived.  相似文献   

14.
Listeners' abilities to learn to hear all the details of an initially unfamiliar sequence of ten 45-ms tones were studied by tracking detection thresholds for each tonal component over a prolonged period of training. After repeated listening to this sequence, the presence or absence of individual tones could be recognized, even though they were attenuated by 40-50 dB relative to the remainder of the pattern. Threshold-tracking histories suggest that listeners tend to employ two different learning strategies, one of which is considerably more efficient. Special training by reducing stimulus uncertainty and extending the duration of the target component was effective in increasing the rate of threshold improvement. Strategies acquired with the first pattern studied generalized to new sequences of tones. The possible implications of these results for the perceptual learning of speech or other auditory codes are discussed.  相似文献   

15.
The temporal course of masking and the auditory filter shape   总被引:1,自引:0,他引:1  
Recent experiments have shown that frequency selectivity measured in tone-on-tone simultaneous masking improves with increasing delay of a brief signal relative to the onset of a longer duration gated masker. To determine whether a similar improvement occurs for a notched-noise masker, threshold was measured for a 20-ms signal presented at the beginning, the temporal center, or the end of the 400-ms masker (simultaneous masking), or immediately following the masker (forward masking). The notch width was varied systematically and the notch was placed both symmetrically and asymmetrically about the 1-kHz signal frequency. Growth-of-masking functions were determined for each temporal condition, for a noise masker without a spectral notch. These functions were used to express the thresholds from the notched-noise experiment in terms of the level of a flat-spectrum noise which would produce the same threshold. In simultaneous masking the auditory filter shapes derived from the transformed data did not change significantly with signal delay, suggesting that the selectivity of the auditory filter does not develop over time. In forward masking the auditory filter shapes were sharper than those for simultaneous masking, particularly on the high-frequency side, which was attributed to suppression.  相似文献   

16.
Reductions in overshoot following intense sound exposures   总被引:1,自引:0,他引:1  
Overshoot refers to the poorer detectability of brief signals presented soon after the onset of a masking noise compared to those presented after longer delays. In the present experiment, brief tonal signals were presented 2 or 190 ms following the onset of a broadband masker that was 200 ms in duration. These two conditions of signal delay were tested before and after a series of exposures to a tone intense enough to induce temporary threshold shift (TTS). The magnitude of the overshoot was reduced after the exposure when a TTS of at least 10 dB was induced, but not when smaller amounts of TTS were induced. The reduction in overshoot was due to a decrease in the masked thresholds with the 2-ms delay; masked thresholds with the 190-ms delay were not different pre- and post-exposure. The implication is that the mechanisms responsible for the normal overshoot effect are temporarily inactivated by the same stimulus manipulations that produce a mild exposure-induced hearing loss. Thus the result is the paradox that exposure to intense sounds can produce a loss of signal detectability in certain stimulus conditions and a simultaneous improvement in detectability in other stimulus conditions.  相似文献   

17.
Thresholds for the discrimination of fundamental frequency (FODLs) and frequency difference limens (FDLs) for individual partials within a complex tone (F0=250 Hz, harmonics 1-7) were measured for stimulus durations of 200, 50, and 16 ms. The FDLs increased with decreasing duration. Although the results differed across subjects, the effect of duration generally decreased as the harmonic number increased from 1 to 4, then increased as the harmonic number increased to 6, and finally decreased for the seventh harmonic. For each duration, FODLs were smaller than the smallest FDL for any individual harmonic, indicating that information is combined across harmonics in the discrimination of FO. FODLs predicted from the FDLs corresponded well with observed FODLs for the 200- and 16-ms durations but were significantly larger than observed FODLs for the 50-ms duration. A supplementary pitch-matching experiment using two subjects indicated that the contribution of the seventh harmonic to the pitch of the 16-ms complex tone was smaller than would be predicted from the FDL for that harmonic. The results are consistent with the idea that the dominant region shifts upward with decreasing duration, but that the weight assigned to individual harmonics is not always adjusted in an optimal way.  相似文献   

18.
Across-frequency integration of complex signals was investigated by measuring psychometric functions [log (d') versus signal level in dB SPL] for detection of brief and long signals presented in broadband noise. The signals were tones at 630, 1600, and 4000 Hz, and a nine-tone complex with components spaced at one-third-octave frequencies between 630 and 4000 Hz. The phase relationship of the components in the complex was varied such that adjacent components were in phase (at 0 degrees), 90, or 180 degrees out of phase. Signal durations (defined in terms of the number of cycles between the half-amplitude points of the Gaussian envelopes) of 4.7 and 150 cycles were tested. Results for six normal-hearing listeners showed that the slopes of the psychometric functions were steeper for the brief than for the long signals, and steeper for the tone complexes than for the tones, particularly for the brief signals. This suggests that the transformation from signal intensity to decision variable may be different for brief complex signals than for tonal signals and long complex signals. Thresholds obtained from the psychometric functions were in excellent agreement with those obtained with an adaptive procedure that employed three interleaved tracks. For the long signals, the threshold improvement for the tone complexes relative to a single tone was well described by a 5* log (n) integration rule. However, the threshold improvement for brief signals obeyed a more efficient integration rule of 7 to 8* log (n). A portion of this effect could be accounted for by the phase relationship of the tone complexes; thresholds for brief signals were lowest when the components were in phase at the envelope peak of the signal. This finding indicates that temporal synchrony across auditory channels may enhance detection of brief multi-tone complexes.  相似文献   

19.
Frequency difference limens for pure tones (DLFs) and for complex tones (DLCs) were measured for four groups of subjects: young normal hearing, young hearing impaired, elderly with near-normal hearing, and elderly hearing impaired. The auditory filters of the subjects had been measured in earlier experiments using the notched-noise method, for center frequencies (fc) of 100, 200, 400, and 800 Hz. The DLFs for both impaired groups were higher than for the young normal group at all fc's (50-4000 Hz). The DLFs at a given fc were generally only weakly correlated with the sharpness of the auditory filter at that fc, and some subjects with broad filters had near-normal DLFs at low frequencies. Some subjects in the elderly normal group had very large DLFs at low frequencies in spite of near-normal auditory filters. These results suggest a partial dissociation of frequency selectivity and frequency discrimination of pure tones. The DLCs for the two impaired groups were higher than those for the young normal group at all fundamental frequencies (fo) tested (50, 100, 200, and 400 Hz); the DLCs for the elderly normal group were intermediate. At fo = 50 Hz, DLCs for a complex tone containing only low harmonics (1-5) were markedly higher than for complex tones containing higher harmonics, for all subject groups, suggesting that pitch was conveyed largely by the higher, unresolved harmonics. For the elderly impaired group, and some subjects in the elderly normal group, DLCs were larger for a complex tone with lower harmonics (1-12) than for tones without lower harmonics (4-12 and 6-12) for fo's up to 200 Hz. Some elderly normal subjects had markedly larger-than-normal DLCs in spite of near-normal auditory filters. The DLCs tended to be larger for complexes with components added in alternating sine/cosine phase than for complexes with components added in cosine phase. Phase effects were significant for all groups, but were small for the young normal group. The results are not consistent with place-based models of the pitch perception of complex tones; rather, they suggest that pitch is at least partly determined by temporal mechanisms.  相似文献   

20.
Loudness functions and frequency difference limens (DLFs) were measured in five subjects with steeply sloping high-frequency sensorineural hearing loss. The stimuli were pulsed pure tones encompassing a range of frequencies. Loudness data were obtained using a 2AFC matching procedure with a 500-Hz reference presented at a number of levels. DLFs were measured using a 3AFC procedure with intensities randomized within 6 dB around an equal-loudness level. Results showed significantly shallower loudness functions near the cutoff frequency of the loss than at a lower frequency, where hearing thresholds were near normal. DLFs were elevated, on average, relative to DLFs measured using the same procedure in five normally hearing subjects, but showed a local reduction near the cutoff frequency in most subjects with high-frequency loss. The loudness data are generally consistent with recent models that describe loudness perception in terms of peripheral excitation patterns that are presumably restricted by a steeply sloping hearing loss. However, the DLF data are interpreted with reference to animal experiments that have shown reorganization in the auditory cortex following the introduction of restricted cochlear lesions. Such reorganization results in an increase in the spatial representation of lesion-edge frequencies, and is comparable with the functional reorganization observed in animals following frequency-discrimination training. It is suggested that similar effects may occur in humans with steeply sloping high-frequency hearing loss, and therefore, the local reduction in DLFs in our data may reflect neural plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号