首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adsorption of carbon dioxide (CO2) was investigated on triamine-grafted, pore-expanded MCM-41 mesoporous silica (TRI-PE-MCM-41). Measurements of adsorption capacity using mass spectrometry showed an enhanced CO2 adsorption capacity in humid streams compared to dry CO2. This was corroborated with breakthrough experiments, which also showed that TRI-PE-MCM-41 offered a practically infinite selectivity towards CO2 over nitrogen. Cyclic measurements of pure CO2 and CO2:N2 = 10:90 mixture using different regeneration modes showed that amine-grafted PE-MCM-41 is particularly suitable for CO2 removal using temperature swing adsorption (TSA) at adsorption temperatures higher than ambient, while temperature-vacuum swing adsorption (TVSA) may be attractive at ambient temperature.  相似文献   

2.
UiO-66 amine functionalized was synthesized by solvothermal method. Post-synthetic modification of UiO-66-NH2 with piperazine, a known promoter to enhance the chemisorption rate of CO2 uptake, was carried out and analyzed to understand its crystalline structure, morphology and porous structure. Results show that piperazine is an effective agent for enhancing the capacity of absorption of CO2. This porous product exhibits an improved CO2 uptake at pressures up to 3000 kPa via physisorption and chemisorption mechanisms. The CH4 adsorption and desorption isotherms on UiO-66, UiO-66-NH2 and pip-UiO-66-NH2 at temperature of 298.15 K and pressures ranging from 0 to 5000 kPa were carried out. IAS theory for a mixture of 0.05 bar CO2, 0.85 bar CH4 and 0.1 bar other gas revealed a selectivity factor of 19.09 for CO2/CH4 from pip-UiO-66-NH2. Results show that these materials are effective adsorbents for CO2 and CH4 uptakes.  相似文献   

3.
4.
At present, carbon dioxide is considered the largest contributor among greenhouse gases. This review covers the current state of problem of carbon dioxide emissions from industrial and combustion processes, the principle of photocatalysis, existing literature related to photocatalytic CO2 reduction over TiO2 based catalysts and the effects of important parameters on the process performance including light wavelength and intensity, type of reductant, metal-modified surface, temperature and pressure. Presented at the 34th International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, 21–25 May 2007.  相似文献   

5.
The stability of amine-functionalized silica sorbents prepared through the incipient wetness technique with primary, secondary, and tertiary amino organosilanes was investigated. The prepared sorbents were exposed to different gaseous streams including CO2/N2, dry CO2/air with varying concentration, and humid CO2/air mixtures to demonstrate the effect of the gas conditions on the CO2 adsorption capacity and the stability of the different amine structures. The primary and secondary amine-functionalized adsorbents exhibited CO2 sorption capacity, while tertiary amine adsorbent hardly adsorbed any CO2. The secondary amine adsorbent showed better stability than the primary amine sorbent in all the gas conditions, especially dry conditions. Deactivation species were evaluated using FT-IR spectra, and the presence of urea was confirmed to be the main deactivation product of the primary amine adsorbent under dry condition. Furthermore, it was found that the CO2 concentration can affect the CO2 sorption capacity as well as the extent of degradation of sorbents.  相似文献   

6.
7.
Ion-exchange with different cations (Na+, NH4 +, Li+, Ba2+ and Fe3+) was performed in binderless 13X zeolite pellets. Original and cation-exchanged samples were characterized by thermogravimetric analysis coupled with mass spectrometry (inert atmosphere), X-ray powder diffraction and N2 adsorption/desorption isotherms at 77 K. Despite the presence of other cations than Na (as revealed in TG-MS), crystalline structure and textural properties were not significantly altered upon ion-exchange. Single component equilibrium adsorption isotherms of carbon dioxide (CO2) and methane (CH4) were measured for all samples up to 10 bar at 298 and 348 K using a magnetic suspension balance. All of these isotherms are type Ia and maximum adsorption capacities decrease in the order Li > Na > NH4–Ba > Fe for CO2 and NH4–Na > Li > Ba for CH4. In addition to that, equilibrium adsorption data were measured for CO2/CH4 mixtures for representative compositions of biogas (50 % each gas, in vol.) and natural gas (30 %/70 %, in vol.) in order to assess CO2 selectivity in such scenarios. The application of the Extended Sips Model for samples BaX and NaX led to an overall better agreement with experimental data of binary gas adsorption as compared to the Extended Langmuir Model. Fresh sample LiX show promise to be a better adsorption than NaX for pressure swing separation (CO2/CH4), due to its higher working capacity, selectivity and lower adsorption enthalpy. Nevertheless, cation stability for both this samples and NH4X should be further investigated.  相似文献   

8.
A miniature CO2 gas sensor based on NASICON (sodium super ionic conductor) thick film was fabricated. The solid-electrolyte NASICON material was synthesized through an inorganic-reagent-based sol-gel method. The resulting materials were characterized by means of X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). NASICON paste was coated on a piece of alumina substrate attached to a platinum heater. Li2CO3-BaCO3 binary carbonate in molar ratio 1 : 1.5 was utilized as the sensing electrode. Within a wide range of CO2 volume ratio concentration from 500 to 5000 ppm, the output electromotive force (EMF) of the sensor followed Nernst equation well at high working temperature. The response and recovery times were 20 and 58 s, respectively. This miniature CO2 gas sensor possessed extra merits such as low power consumption, miniaturized framework, and easy fabrication.  相似文献   

9.
This study presents using zeolitic imidazolate framework-8 (ZIF-8) as porous filler dispersed phase and polyurethane (PU) as continuous phase to synthesis mixed matrix membranes (MMMs). ZIF-8 nanoparticles were synthesized using centrifugal method. The synthesized nanoparticles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermal gravimetric analysis (TGA). In order to investigate the effect of ZIF-8 loading on the membrane performance in CO2/CH4 separation, different membranes were prepared with various amounts of ZIF-8 (0–50 wt%). Membranes properties were characterized by SEM, XRD, TGA, differential scanning calorimetry (DSC), and tensile analysis. SEM images exhibit that the ZIF-8 is dispersed uniformly in cross section of membrane. Thermal stability of membranes increases with addition of the ZIF-8 nanoparticles into the polymer matrix. Both tensile strength and strain at break in the MMMs increase with the ZIF-8 loading. To study the effect of feed pressure on CO2 and CH4 transport properties of the membranes, single gas experiments were conducted at 4, 8, and 12 bar feed pressures. Incorporation of ZIF-8 crystals into continuous PU matrix resulted in high-performance gas separation membranes. Increasing feed pressure, significantly, increased separation performances in all the membranes.  相似文献   

10.
The effect of graphene oxide (GO) nanosheets on the CO2/CH4 separation performance of a rubbery (poly(dimethylsiloxane), PDMS) as well as a glassy (polyetherimide, PEI) polymer is studied. Interfacial interactions between the nanosheets and both polymers are revealed by FTIR and SEM. The results of gas permeation through the membranes demonstrate that GO nanosheets enhance CO2/CH4 diffusivityselectivity of PEI and CO2/CH4 solubility-selectivities of the PEI and PDMS polymers, while diminish CO2/CH4 diffusivity-selectivity of PDMS. Furthermore, the possibility of overcoming the common tradeoff between CO2 permeability and CO2/CH4 selectivity of rubbery and glassy polymers by incorporating very low amounts of graphene oxide nanosheets is addressed. In other words, at 0.25 wt % GO loading, the PEI membrane shows simultaneous enhancement of CO2 permeability (16%) and CO2/CH4 selectivity (59%). Also, for the PDMS membrane simultaneous enhancement of CO2 permeability (29%) and CO2/CH4 selectivity (112%) is occurred at 0.5 wt % GO loading. Finally, the capability of the well known Nielsen model to predict the gas permeability behavior of the nanocomposites is investigated.  相似文献   

11.
Dry potassium-based sorbents were prepared by impregnation with potassium carbonate on supports such as activated carbon (AC), TiO2, Al2O3, MgO, CaO, SiO2 and various zeolites. The CO2 capture capacity and regeneration property of various sorbents were measured in the presence of H2O in a fixed bed reactor, during multiple cycles at various temperature conditions (CO2 absorption at 50–100 °C and regeneration at 130–400 °C). The KAlI30, KCaI30, and KMgI30 sorbents formed new structures such as KAl(CO3)2(OH)2, K2Ca(CO3)2, K2Mg(CO3)2, and K2Mg(CO3)2·4(H2O), which did not completely convert to the original K2CO3 phase at temperatures below 200 °C, during the CO2 absorption process in the presence of 9 vol.% H2O. In the case of KACI30, KTiI30, and KZrI30, only a KHCO3 crystal structure was formed during CO2 absorption. The formation of active species, K2CO3·1.5H2O, by the pretreatment with water vapor and the formation of the KHCO3 crystal structure after CO2 absorption are important factors for absorption and regeneration, respectively, even at low temperatures (130–150 °C). In particular, the KTiI30 sorbent showed excellent characteristics with respect to CO2 absorption and regeneration in that it satisfies the requirements of a large amount of CO2 absorption (87 mg CO2/g sorbent) without the pretreatment with water vapor, unlike KACI30, and a fast and complete regeneration at a low temperature condition (1 atm, 150 °C). In addition, the higher total CO2 capture capacity of KMgI30 (178.6 mg CO2/g sorbent) than that of the theoretical value (95 mg CO2/g sorbent) was explained through the contribution of the absorption ability of MgO support. In this review, we introduce the CO2 capture capacities and regeneration properties of several potassium-based sorbents, the changes in the physical properties of the sorbents before/after CO2 absorption, and the role of water vapor and its effects on CO2 absorption.  相似文献   

12.
Coordination polymers [AgCF3CO2(2,3-Et2Pyz)](I)(2,3-Et2Pyz-C8H12N2) and [AgCF3CO2(Bpeta)] (II) (Bpeta is 4′4-bipyridylethane, C12H12N2) are synthesized. Their structures are determined. The crystals of compound I are monoclinic, space group P2(1)/n, a = 7.185(1), b = 14.754(1), c = 12.317(1)Å, β = 97.09(1)°, V = 1295.7(2) Å3, ρcalcd = 1.831 g/cm3, Z = 4. Structure I consists of infinite chains of doubled polymeric chains joined by silver carboxylate dimers [[Ag2(CF3CO2)2(Et2Pyz)2]. The coordination polyhedron of Ag+ is a distorted tetrahedron. The crystals of compound II are orthorhombic, space group Pbca, a = 13.555(3), b = 13.991(3), c = 16.449(3) Å, V = 3119.5(11) Å3, ρcalcd = 1.725 g/cm3, Z = 8. Doubled polymeric chains with the Ag…Ag bond (3.16 Å) are also formed in structure II. Supramolecular layers are formed in the structure due to the weak π-π-stacking interaction between the aromatic groups of chains. The CF3CO 2 ? anion is weakly bound to Ag+ (Ag-Oavg 2.790 Å).  相似文献   

13.
The reaction of Ru3(CO)12 with 2(diphenylphosphino)ethyl-triethoxysilane (DPTS) in hydrocarbons, leads to the functionalized Ru3(CO)12−n [Ph2P(CH2)2Si(OEt3)] n (n = 1,2) complexes. The complex with two phosphine substituents was chemically anchored on mesoporous silicas, SBA-15 and MCM-41, in order to obtain two hybrid materials characterized by a different localization of the metal centre on the surface of the porous supports. A detailed investigation of the cluster, before and after chemical anchoring on the mesoporous silicas, was pursued. Particular attention was also devoted to the study of the morphological, structural and textural properties of the metal-functionalised silicas (Ru/SBA-15 and Ru/MCM-41) by infrared spectroscopy (FT-IR), scanning electron microscopy, X-ray diffraction and N2 physisorption analysis.  相似文献   

14.
The effects of the sorption and the regeneration temperatures on the performance of a novel rapid thermal swing chemisorption (RTSC) process (Lee and Sircar in AIChE J. 54:2293–2302, 2008) for removal and recovery of CO2 from an industrial flue gas without pre-compression, pre-drying, or pre-cooling of the gas were mathematically simulated. The process directly produced a nearly pure, compressed CO2 by-product stream which will facilitate its subsequent sequestration. Na2O promoted alumina was used as the CO2 selective chemisorbent, and the preferred temperatures were found to be, respectively, 150 and 450 °C for the sorption and regeneration steps of the process. The specific cyclic CO2 production capacity of the process and the pressure of the by-product CO2 gas were substantially increased over those previously achieved by using the sorption and regeneration temperature of, respectively, 200 and 500 °C (Lee and Sircar in AIChE J. 54:2293–2302, 2008). The net compressed CO2 recovery from the flue gas (∼92%) did not change. However, substantially different amounts of high and low pressure steam purges were necessary for comparable degree of desorption of CO2. A first pass estimation of the capital and the operating costs of the RTSC process was carried out for a relatively moderate size application (flue gas clean up and CO2 recovery from a ∼80 MW coal fired power plant). Both costs were substantially lower than those for a conventional absorption process using MEA as the CO2 solvent (Desideri and Paolucci in Energy Convers. Manag. 40:1899–1915, 1999).  相似文献   

15.
The grand canonical ensemble Monte Carlo method has been used to study adsorption of carbon dioxide, methane, and their mixtures with different compositions in slitlike carbon pores at a temperature of 318 K and pressures below 60 atm. The data obtained have been used to show the effect of fixed amounts of pre-adsorbed water (19, 37, and 70 vol %) on the adsorption capacity and selectivity of carbon micro- and mesopores. The presence of water reduces the adsorption capacity throughout the studied pressure range upon adsorption of gaseous mixtures containing less than 50% CO2, as well as in narrow micropores (with widths of 8?12 Å). Upon adsorption of mixtures with CO2 contents higher than 50%, the adsorption capacity of pores with low water contents appears, in some region of the isotherm, to be higher than that in dry pores. In the case of wide pores (16 and 20 Å), this region is located at low and moderate pressures, while for mesopores it is located at high pressures. The analysis of the calculated data has shown that the molecular mechanism of the influence of preadsorbed water on the adsorption capacity is based on the competition between the volume accessible for adsorption (decreases the capacity) and the strength of the interaction between carbon dioxide molecules and water molecules (increases the capacity). Therewith, the larger the surface area of the water–gas contact, the stronger the H2O–CO2 interactions.  相似文献   

16.
This is the first study of the NaBO2-Na2CO3-Na2MoO4-Na2WO4 quaternary system by differential thermal analysis. Na2[MoO4(x)WO4(1 − x)] solid solutions in the quaternary system are found to not decompose.  相似文献   

17.
18.
Amine double-functionalized adsorbents were fabricated using silica gel as supports and their capabilities for CO2 capture were examined. Aminopropyltrimethoxysilane (1N-APS), and N1-(3-trimethoxysilylpropyl)diethylenetriamine (3N-APS) were used as grafted amine compounds, and tetraethylenepentamine and polyethyleneimine were used as impregnated species. The influence of double-functionalization method on the CO2 adsorption performance and textural properties of adsorbents was investigated. The adsorption capacity, the amine efficiency, and the thermal stability of double-functionalized sorbents depend strongly upon molecular variables associated with two different functional states (i.e., chemically grafted and physically impregnated amines). The temperature dependence of adsorption isotherms reveals that the CO2 adsorption behavior in the double-functionalized adsorbents follow the diffusion limitation model proposed by Xu et al. (Energy Fuels 16:1463–1469, 2002) where the CO2 adsorption is helped by the diffusion of impregnated amines. It is also found that the adsorption isotherm in the double-functionalized sorbent system with a proper choice for grafted and impregnated amines is nearly independent of temperature, which may offer a novel means to fabricate practically useful sorbents that can be used in a wide range of temperature without loss of CO2 adsorption capacity.  相似文献   

19.
Thin films of La2O3 were deposited onto glass substrates by ultrasonic spray pyrolysis. Their structural and morphological properties were characterized by X-ray diffraction, Fourier transform Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photo-electron spectroscopy, Brunauer-Emmett-Teller and optical absorption techniques. The sensor displays superior CO2 gas sensing performance at a low operating temperature of 498 K. The signal change on exposure to 300 ppm of CO2 is about 75%, and the signal only drops to 91% after 30 days of operation.
Graphical abstract Schematic diagram of the CO2 gas sensing mechanism of an interconnected web-like La2O3 nanostructure in presence of 300 ppm of CO2 gas and at an operating temperature of 498 K.
  相似文献   

20.
Three different aminosilanes ((3-aminopropyl)trimethoxysilane (1NS), N-[3-(trimethoxysilyl) propyl]ethylenediamine (2NS), N1-(3-trimethoxysilylpropyl)diethylenetriamine (3NS)) were grafted covalently inside nanoporous silica (NPS-1) with a large surface area to prepare CO2 adsorbents. The prepared CO2 sorbents were evaluated for their CO2 sorption capacity, kinetic behavior, temperature programmed desorption (TPD) and textural properties. Grafting efficiency of 1NS was better due to the smaller molecular size compared to 2NS and 3NS, which are difficult to react with the hydroxyl group of the silica surface due to steric hindrance. The highest adsorption capacity of 7.0 wt% was observed for the 2NS/NPS-1 adsorbent, followed by 5.2 wt% for 1NS/NPS-1, then 5.0 wt% for 3NS/NPS-1. The adsorption capacity of 2NS/NPS-1 was highest at 30 °C, and it gradually decreased as the adsorption temperature increased. TPD analysis showed that the reaction of primary amine of 2NS with CO2 inside the nanoporous silica could form less thermally stable carbamic acid and carbamate compared to 1NS and 3NS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号