首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper deals with the thermal stability and decomposition behavior of brominated butyl rubber‐based damping material (BRP). The raw materials, butyl rubber matrix (IIR) and brominated phenolic resin (PF), were also investigated as control. IIR shows one decomposition stage, while PF shows four weight loss stages. Flynn‐Wall‐Ozawa calculation indicates that BRP has thermal stability between IIR and PF. Thermogravimetric analysis–Fourier transform infrared (TGA‐FTIR) and pyrolysis–gas chromatography/mass spectrometry (GC/MS) were used to investigate the volatile products under nitrogen atmosphere. As expected, BRP shows combined thermal decomposition behavior of both IIR and PF. The degradation mechanism of BRP was proposed, which is not significantly influenced by the incorporation of PF. The application stability of BRP is worth to be noticed since the post‐cure effect, that is, the free radicals remained from vulcanization would cause additional cross‐linking when stored at 80°C to 120°C.  相似文献   

2.
The thermal degradation of polymethacrylic acid was found to have two separate decomposition regions. The first decomposition region, due to anhydride formation primarily, was caused by the conversion of polymethacrylic acid to polymethacrylic anhydride. This reaction followed first-order kinetics and had an activation energy of 40.5 kcal/mol. The second decomposition region was the thermal degradation for the corresponding polymethacrylic anhydride. In this region, the fragmentation of anhydride rings structure in polymethacrylic anhydride constitutes the major decomposition reaction with an activation energy of 37.4 kcal/mol. © 1992 John Wiley & Sons, Inc.  相似文献   

3.
The effects of flame retardants such as hydrated aluminium oxide, antimony trioxide and chloroparaffin on the thermal properties and flammability of sulphur vulcanizates of butyl and halogenated butyl elastomers were studied. The thermoanalytical curves of the elastomers were interpreted. Greater tendencies to thermal degradation were observed for halogenated butyl elastomers than for the original butyl rubber elastomer. This was confirmed by elastomer combustibility studies. The use of these flame retardants allowed the formation of self-extinguishing vulcanizates of the investigated elastomers.  相似文献   

4.
5.
Thermal degradation of UHMWPE   总被引:1,自引:0,他引:1  
The thermal behaviour of ultra-high molecular weight polyethylene (UHMWPE) of different molecular weights was examined by thermal analysis methods. The melting temperatureT m and the heat of melting H were measured by the DSC method. The thermooxidative degradation process was investigated by using a MOM Q-1500 D derivatograph at various heating rates in air atmosphere. The initial decomposition temperatureT i was determined from the TG curves, and other characteristic temperatures of decomposition were calculated. It was found thatT m and H are higher for UHMWPE than those for HDPE, i.e. 146C and 195 J g–1 for UHMWPE as compared with 133C and 166 J g–1 for HDPE. The thermal behaviour of the investigated UHMWPE samples is not significantly influenced by molecular weight.  相似文献   

6.
Molecular weight change studies have shown that the thermal degradation of random copolymers of styrene — namely HIPS, SAN, and ABS-at low temperatures and in air involves random chain scission. The dominant process in the degradation of HIPS is random chain scission due to weak links, whereas in SAN it is intermolecular chain transfer. In ABS, the degradation is initially random scission due to weak links and then mainly intermolecular chain transfer. The infrared spectra show that during degradation the labile weak links are attacked by oxygen and peroxidic free radicals are produced. Via hydrogen abstraction or autoxidation of olefinic links, these free radicals are responsible for the formation of aliphatic ketonic or peroxyester structures, and for isomerization and cyclization. The activation energies of overall degradation of HIPS, SAN, and ABS are 134, 142, and 92 kJ.mol–1 respectively.Part of the PhD dissertation of Mrs. Jaya Nambiar, University of Gorakhpur, Gorakhpur-273001, 1980.  相似文献   

7.
The thermal degradation of poly(ether sulfone) (PES) and polysulfone (PSF) was studied with a combination of thermogravimetric analysis and stepwise pyrolysis–gas chromatography/mass spectrometry techniques with consecutive heating of the samples at fixed temperature intervals (100 °C) to achieve narrow‐temperature pyrolysis conditions. The individual mass chromatograms of various pyrolysates were correlated with pyrolysis temperatures to elucidate the pyrolysis mechanism. The major mechanism for both PES and PSF was a one‐stage pyrolysis involving main‐chain random scission and carbonization. The major products SO2 and phenol were released from the sulfone and ether groups in PES. The major products SO2, phenol, and 1‐methyl‐4‐phenoxybenzene were released from the sulfone, ether, and isopropylene groups in PSF. In the PES, the thermal stability of the sulfone and ether groups was identical to the maximum thermogravimetric loss rate. In the PSF, the thermal stability was in the following order: sulfone < ether < isopropylene. The temperature of the maximum thermogravimetric loss rate was similar to the maximum evolution of phenol. However, there was a considerable difference in the thermal behavior of both polymers; the correlation of the polymer structure to the degradation mechanism is discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 583–593, 2000  相似文献   

8.
Thermal Analysis of Casein   总被引:3,自引:0,他引:3  
Case in was analyzed during thermal treatment and pyrolysis. The thermal degradation process of casein was interpreted and thermostability indices, rate, order and activation energy of thermode-structive reaction of casein were determined on the basis of thermogravimetric analysis. The thermodestruction of casein has the characteristics of a first order reaction with activation energy E a=3.87 kcal mol–1 (16.2 kJ mol–1).The pyrolysis of casein was investigated and we determined optimal heating temperature — 550°C and yields of biochar, pitch, pyrolysis water and gases.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

9.
Thermal degradation of poly(methyl-n-hexylsilane) in the solid state in absence of oxygen reveals formation of a cyclic pentamer between 150 and 250°C. Polymer is gradually degraded to an intermediate molecular weight distribution. The weight average of this new distribution is not only temperature-dependent, but is also a function of viscosity of the polymer and nature of chain ends. As no insolubles or Si? H groups are formed, the degradation mechanism is most likely a back-biting mechanism induced by active chain ends such as silyl anions or Si? Cl rather than a homolytic cleavage of the main chain. A concurrent intramolecular rearrangement reaction is also proposed. Moreover, this study proposes an explanation to the trimodal molecular weight distribution obtained by the Wurtz coupling of dichlorosilanes with molten sodium in refluxing toluene. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
Thermal behaviour of different starch derivatives, i.e. starch esters and ethers having degree of substitution (DS) in the range of 0.02–0.18 were studied. Potato, maize and wheat starches were used. Measurements were carried out by coupled thermal analysis/ mass spectrometry method (STA-MS) in air atmosphere. The major DTG peak during the investigation for starch derivatives is observed below 300°C. The mass loss up to a temperature of 300°C is about 50%. The most abundant ions found areH2O+ and CO2 +. For the studied starch derivatives with a low degree of substitution (DS<0.18) no correlation was found between thermal stability and the level of substitution regardless of the nature of substitution.  相似文献   

11.
The thermal degradation behavior of two organo-soluble polyimides was investigated by high resolution pyrolysis-gas chromatography/mass spectrometry. The pyrolyzates of the polymers at various temperatures were identified and characterized quantitatively. The relationship between the polymer structure and pyrolyzate distribution was discussed. The kinetic parameters of the thermal degradation were calculated based on thermogravimetric measurements. Finally, the thermal degradation mechanism for the polymers was suggested.  相似文献   

12.
纳米sio2;聚丙烯酸酯;复合涂层;热降解  相似文献   

13.
Summary: Pressure-Sensitive Adhesives (PSAs) are used for many applications (e.g. tapes and labels), and the market is still growing as new applications are regularly discovered. Emulsion polymerization is widely used to produce water-based PSAs. In this work, the influence of morphology, diameter and acrylic acid concentration in the particles on adhesion properties (peel, tack and shear) was studied. To do so, two series of homogeneous and core-shell latex particles of poly(butyl acrylate-2-ethyl-hexyl acrylate) with different concentrations of acrylic acid (0, 1, 3 and 5 wt%) and three different average diameters, were synthesized by means of emulsion polymerization techniques. The materials were characterized by dynamic light scattering, zeta potential and transmission electronic microscopy. The contents of acrylic acid in the polymer and dispersed medium were determined and the higher quantity of it was found within the particles. The best equilibrium between adhesion properties was found in the core-shell particles with 3 wt% of AA.  相似文献   

14.
Thermal degradations of 4,4′-diphenylmethane diisocyanate-based thermoplastic polyurethane elastomers were conducted and investigated as functions of heating conditions by using thermogravimetric analysis, ultraviolet-visible (UV-vis) spectroscopy, gel permeation chromatography (GPC), and Fourier transform infrared (FTIR) spectroscopy. The extent of degradation increased with increasing temperatures and times. The degradation was accompanied by crosslinking and was more significant under air than under nitrogen, indicating that a free-radical mechanism was involved. The degradation mainly was due to unstable hard segments and gave a red shift in the UV-vis spectra. The degradation, leading to considerable discoloration, was demonstrated by UV-vis spectroscopy, starting from 240 °C in air for 10 min. Heated in nitrogen for the same period of time, the samples did not show considerable discoloration until 280 °C. The UV-vis data suggested that the degradation occurred through cleavages of N H bonds and C H bonds on the hard segments. Chain scission of polymer main chains, as demonstrated by GPC data, occurred at a temperature as low as 200 °C in nitrogen, although cleavage of N H bonds was not detectable by UV-vis and FTIR spectroscopy at these conditions. FTIR spectroscopy also provided evidence of cleavage of N H bonds and depolymerization of urethane linkages. Irganox 1010 was found to be an efficient antioxidant. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4126–4134, 1999  相似文献   

15.
The lignin preparations isolated from pine and beech wood were subjected to a thermogravimetric analysis (TG). The lignin preparations were also used to obtain samples of different degrees of thermal degradation characterised by mass-losses in the interval from 10 to 60% of their initial mass. These samples were subjected to elementary analysis and the content of methoxy groups. It was observed that the content of these functional groups declined in products in which the degree of thermal degradation exceeded 30%, which corresponds to temperatures over 450°C. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Wood has been treated with guanidine phosphate, guanidine nitrate, guanidine carbonate and guanidine chloride to impart flame retardancy. The samples were subjected to differential thermal analysis (DTA) and thermogravimetry (TG) from ambient temperature to 800°C in air to study their thermal behaviors. From the resulting data, kinetic parameters for different stages of thermal degradation were obtained following the method of Broido. For the decomposition of wood and flame retardant wood, the activation energy was found to decrease from 116 to 54 kJ mol–1; the char yield was found to increase from 5.6 to 34.9%, LOI from 18 to 41.5, which indicated that the flame retardancy of treated wood was improved. Effects of the different compounds on the degradation and flammability of wood have also been proposed.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

17.
The influence of different inorganic salts (MgCl2, ZnCl2, NiCl2 and H2PtCl6) on the primary mechanisms of cellulose thermal degradation has been conducted by using thermogravimetric (TG-DTG) and pyrolysis-mass spectrometry (Py-MS) analysis at low heating rate (10°C min-1) from ambient temperature to 500°C. The results clearly demonstrate that the used salts influence the primary degradation mechanisms. Furthermore, we can assume that some inorganic salts could be considered as specific catalysts and some others as inhibitors. MgCl2 promotes selectively initial low temperature dehydration as observed both by TG and Py-MS. ZnCl2 strongly changes the thermal behaviour of impregnated sample. The maximum mass loss rate temperature is shifted to lower temperature and on the basis of our results we can conclude that ZnCl2 acts as catalyst in all primary degradation mechanisms. NiCl2 and H2PtCl6 do not modify significantly the cellulose thermal behaviour but change the composition of both produced gases and liquids suggesting that these minerals catalyse some secondary reactions.  相似文献   

18.
The thermal decomposition under non-oxidative conditions of a copolymer of vinylidene cyanide (VCN) and 2,2,2-trifluoroethyl methacrylate (MATRIF) was investigated by thermogravimetry (TG) and Pyrolysis-GC-MS. The type and composition of the pyrolytic products and the shape of the TG curve indicate that both the main thermal degradation process, with onset at 368 °C, and a minor weight loss at around 222 °C are mainly associated with random main-chain scission. The kinetic parameters were determined by means of dynamic and, in the case of the main degradation stage, also isothermal methods. The results obtained from the dynamic methods (Friedman, Flynn-Wall-Ozawa, and Kissinger, respectively) are in good agreement with those obtained from isothermal TG data. The activation energy was in the 177-213 kJ/mol range for the first stage, and 224-295 kJ/mol for the second stage, the highest respective values being determined from the kinetic analysis according to the Kissinger method.  相似文献   

19.
The thermal behaviour of Diclofenac was investigated using Differential Scanning Calorimetry, Hot Stage Microscopy, and Thermogravimetric Analysis. A discrepancy was observed between the melting point values recorded under dynamic flow of either dry nitrogen (180°C) or air (160°C). By means of High Performance Liquid Chromatography/Mass Spectrometric analyses, it has been possible to ascribe this difference in melting points to the formation of three degradation products as a result of intramolecular cyclization and condensation reactions during the heating process in an oxidative atmosphere. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
全氟磺酰氟树脂是四氟乙烯和全氟3,6-二氧杂、4-甲基、7-辛烯磺酰氟(1)的共聚物(2):  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号