首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
复杂边界附近气泡的动态特性研究   总被引:1,自引:0,他引:1  
本文假设气泡周围流场为无粘、无旋、不可压缩的理想流体,基于势流理论,运用边界元法模拟近边界水下爆炸气泡的动力学特征,建立气泡、壁面以及自由面三者之间复杂耦合动力学模型,在气泡运动模拟过程中引入数值光顺技术及弹性网格技术(EMT),避免因网格扭曲而导致的数值发散,开发相应的三维计算程序,并与自由表面附近气泡运动的实验数据进行对比分析,计算结果表明本文的计算方法及程序具有较高的精度.在此基础上,用本文开发的三维程序模拟了单个及多个气泡与自由表面及圆筒等复杂边界的相互作用,其中包括水面漂浮结构和水下结构,气泡在自由表面及结构的联合作用下呈现出强非线性.本主文旨在为相关复杂边界附近气泡动力学特性研究提供参考.  相似文献   

2.
李帅  张阿漫  韩蕊 《力学学报》2014,46(4):533-543
假设水下爆炸气泡的内部气体在膨胀收缩过程中满足绝热条件,周围流体无黏无旋不可压缩. 基于势流理论,采用边界元法研究气泡动力学行为,重点关注气泡引起的流场脉动载荷以及滞后流特性,给出了相关的理论推导和数值计算方法. 通过将数值结果与解析解、实验值进行对比,数值模型的收敛性和有效性能够得到保证. 利用编写的程序进行计算和分析,发现在气泡加速膨胀阶段,流场压力在气泡径向不一定是逐渐衰减,还有可能以先增后减的规律变化;气泡射流后,为了能够继续描述环状气泡的运动以及流场特性,将此时的流场分为无旋场和一个布置在气泡内部涡环的叠加,计算过程中采用了一些数值技巧处理气泡的拓扑结构,得以连续模拟多个周期的气泡运动. 环状气泡具有相对较高的上浮迁移速度,而且在其顶部和底部附近分别形成两个高压区,顶部的高压区峰值相对较大,底部的高压区范围相对较大. 环状气泡中心轴上的流场速度会在气泡中心有一个加速过程,在气泡顶部附近又迅速减小.   相似文献   

3.
假设水下爆炸气泡的内部气体在膨胀收缩过程中满足绝热条件,周围流体无黏无旋不可压缩. 基于势流理论,采用边界元法研究气泡动力学行为,重点关注气泡引起的流场脉动载荷以及滞后流特性,给出了相关的理论推导和数值计算方法. 通过将数值结果与解析解、实验值进行对比,数值模型的收敛性和有效性能够得到保证. 利用编写的程序进行计算和分析,发现在气泡加速膨胀阶段,流场压力在气泡径向不一定是逐渐衰减,还有可能以先增后减的规律变化;气泡射流后,为了能够继续描述环状气泡的运动以及流场特性,将此时的流场分为无旋场和一个布置在气泡内部涡环的叠加,计算过程中采用了一些数值技巧处理气泡的拓扑结构,得以连续模拟多个周期的气泡运动. 环状气泡具有相对较高的上浮迁移速度,而且在其顶部和底部附近分别形成两个高压区,顶部的高压区峰值相对较大,底部的高压区范围相对较大. 环状气泡中心轴上的流场速度会在气泡中心有一个加速过程,在气泡顶部附近又迅速减小.  相似文献   

4.
模拟了单个气泡在重力场作用下动态特性,假设流场为无粘、无旋且不可压的理想流体,采用三角形单元离散流场边界,并用边界积分法求解流场,用Mixed-Eulerian-Lagrangian方法模拟气泡的演化,并在必要的时候采用三维光顺方法对气泡表面及其速度势分布进行光顺,使计算程序更准确,更稳定.在分析过程中,将本文三维模型的计算结果与Rayleigh-Plesset气泡模型及试验数据进行对比分析,三维模型的计算值与精确解及实验数据吻合很好,表明本文方法及计算模型具有较高的精度,并通过对比改变不同物理参数时对气泡运动周期及射流速度的影响,得出一些规律性的曲线,旨在为相关的水下气泡动力学分析提供参考.  相似文献   

5.
将水中爆炸气泡运动阶段周围流场假设为无粘、无旋、不可压缩的理想流体,运用边界元法模拟自由场中气泡的运动,在气泡运动模拟过程中引入数值光顺技术及弹性网格技术,避免因网格扭曲而导致的数值发散,并开发计算程序。计算值与实验值吻合良好,误差小于10%。从自由场水中爆炸气泡的基本现象入手,基于本文中开发的程序系统地研究了自由场中气泡的动力学特性。对流场中不同方位的压力进行分析,得出气泡中心的迁移方向及射流的攻击方向压力载荷比其他方向均大,说明气泡射流的攻击方向压力载荷最大,对水中结构造成严重毁伤,表明了气泡载荷的不对称性。计算了流场中不同位置的速度变化曲线,结果表明随着距气泡中心距离的增大,气泡运动引起的滞后流的速度迅速减小,且随着气泡的膨胀和坍塌,滞后流的方向逆转,总结了滞后流的衰减及变化规律。  相似文献   

6.
简单Green函数法模拟三维水下爆炸气泡运动   总被引:17,自引:1,他引:16  
姚熊亮  张阿漫 《力学学报》2006,38(6):749-759
假定水下爆炸气泡脉动阶段的流场是无旋、不可压缩的,运用势流理论导出气泡边界面运动的控制方程,采用高阶曲面三角形单元离散了维气泡表面,用边界积分法求解气泡的运动.并将计算结果与Rayleigh-Plesset气泡模型和试验数据进行对比分析,分析结果表明高阶曲面单元能够高精度的模拟水下爆炸气泡运动,且比线性单元有多方面的优越性.分别模拟了有、无重力场和刚壁时对气泡运动的影响,并预测了气泡在流场中膨胀、坍塌、迁移、射流形成等苇要动力学行为,同时建立了水下爆炸气泡与圆柱简相互作用的三维模型,模拟了自由液面、圆柱筒附近三维气泡的动力学特性.  相似文献   

7.
可压缩流场中气泡脉动数值模拟   总被引:6,自引:3,他引:3  
在应用边界元方法对气泡动力学的研究中, 绝大多数模型是建立在不压缩势流理论基础之上, 针对可压缩流场中气泡运动特性的研究很少. 从波动方程出发, 分别在气泡运动前期和后期对波动方程进行简化, 得到气泡运动局部和全局简化方程, 采用双渐进方法对简化方程进行匹配, 提出了考虑流场可压缩性的非球状气泡运动模型. 该模型的计算结果与Prospertti 等的解析结果吻合很好, 气泡脉动最大半径和内部最大压力随气泡脉动逐渐减小. 基于该模型对比了自由场中药包爆炸考虑可压缩性与不考虑可压缩性的计算结果, 发现考虑可压缩性气泡射流速度较小, 随后基于该模型计算了刚性边界下气泡的运动特性.  相似文献   

8.
应用直接边界元法在时域中求解稳定航速运动的三维自由面兴波问题.基于格林定理,在所有边界面上划分网格,对边界积分方程进行数值离散,采用线性自由面边界条件,随时间步进更新自由面势.由于物体空间位置移动辐射条件不需要单独表述,迭代过程中自由面计算域保持不变.以割划水面NACA0024为例,计算模拟了自由面兴波稳定波形;提出了求解矩阵方程组奇异性的处理方法和解决割划问题的动网格技术.本文计算结果和有限体积法及有关试验结果对比表明,该方法是可靠的.  相似文献   

9.
采用FTM(Front Tracking Method)方法,使用Fortran语言自编程序,对气泡上升运动进行数值模拟,并且选用小气泡作为研究对象,忽略气泡变形对气泡运动的影响。通过对比分析1~4个气泡的流场与运动速度变化,发现气泡间相互作用主要受流场变化的影响,由于双气泡的漩涡抵消和尾迹合并作用,双气泡的终极速度要比单气泡小,而三个气泡和四个气泡向上运动时中间气泡超越两侧气泡之后逐渐表现为单气泡和双气泡的运动特性,但发展到终极速度的时间更长。  相似文献   

10.
以气泡体积加速度模型为基础研究水下爆炸气泡运动的初始条件,采用MSC.DYTRAN 非线性 有限元软件,结合开发的定义流场初始条件与边界条件的子程序,研究水下爆炸气泡运动特性,包括气泡的脉 动、坍塌以及射流等运动特性,并将气泡脉动体积计算结果与实验及边界积分方法计算结果进行对比,验证了 有限元模型的正确性与有效性。以此为基础,得到初始水深、装药量与气泡的脉动体积、最大半径、周期以及 射流速度之间的关系,计算结果与经验公式具有较好的一致性。得到一些有规律性的曲线,可为相关水下爆 炸气泡动态特性研究提供参考。  相似文献   

11.
A theoretical study on a linear hydroelastic vibration of two annular plates coupled with a bounded fluid is presented. The proposed method, based on the Rayleigh–Ritz method and the finite Hankel transform, is verified through a finite element analysis by using a commercial computer code, with an excellent accuracy. It is assumed that plates with an unequal thickness and with an unequal inner radius are clamped along their edges and an inviscid compressible fluid fills the space between the annular plates and the outer rigid vessel. When the two annular plates are identical, distinct in-phase and out-of-phase modes are observed. By increasing the difference in the plate thickness, the symmetric in-phase and out-of-phase modes with respect to the middle plane of the system are gradually shifted to pseudo in-phase and out-of-phase modes, and eventually they are changed to mixed modes. It is found that the natural frequencies decrease with an increase of the fluid compressibility, and additional modes due to a fluid concentration are observed when the plates are coupled with a compressible fluid. The fluid compressibility effect on the natural frequency is dominant in the out-of-phase modes and the higher modes. Also, the effects of the fluid thickness or the distance between the plates and the inner radius of the plates on the natural frequencies of the wet modes are investigated.  相似文献   

12.
Interactions of multiple spark-generated bubbles with phase differences   总被引:1,自引:0,他引:1  
This paper aims to study the complex interaction between multiple bubbles, and to provide a summary and physical explanation of the phenomena observed during the interaction of two bubbles. High-speed photography is utilized to observe the experiments involving multiple spark-generated bubbles. Numerical simulations corresponding to the experiments are performed using the Boundary Element Method (BEM). The bubbles are typically between 3 and 5 mm in radius and are generated either in-phase (at the same time) or with phase differences. Complex phenomena are observed such as bubble splitting, and high-speed jetting inside a bubble caused by another collapsing bubble nearby (termed the ‘catapult’ effect). The two-bubble interactions are broadly classified in a graph according to two parameters: the relative inter-bubble distance and the phase difference (a new parameter introduced). The BEM simulations provide insight into the physics, such as bubble shape changes in detail, and jet velocities. Also presented in this paper are the experimental results of three bubble interactions. The interesting and complex observations of multiple bubble interaction are important for a better understanding of real life applications in medical ultrasonic treatment and ultrasonic cleaning. Many of the three bubble interactions can be explained by isolating bubble pairs and classifying their interaction according to the graph for the two bubble case. This graph can be a useful tool to predict the behavior of multiple bubble interactions.  相似文献   

13.
Two vibrating bubbles submerged in a fluid influence each others’ dynamics via sound waves in the fluid. Due to finite sound speed, there is a delay between one bubble’s oscillation and the other’s. This scenario is treated in the context of coupled nonlinear oscillators with a delay coupling term. It has previously been shown that with sufficient time delay, a supercritical Hopf bifurcation may occur for motions in which the two bubbles are in phase. In this work, we further examine the bifurcation structure of the coupled microbubble equations, including analyzing the sequence of Hopf bifurcations that occur as the time delay increases, as well as the stability of this motion for initial conditions which lie off the in-phase manifold. We show that in fact the synchronized, oscillating state resulting from a supercritical Hopf is attracting for such general initial conditions.  相似文献   

14.
An Eulerian–Lagrangian approach is developed for the simulation of turbulent bubbly flows in complex systems. The liquid phase is treated as a continuum and the Navier–Stokes equations are solved in an unstructured grid, finite volume framework for turbulent flows. The dynamics of the disperse phase is modeled in a Lagrangian frame and includes models for the motion of each individual bubble, bubble size variations due to the local pressure changes, and interactions among the bubbles and with boundaries. The bubble growth/collapse is modeled by the Rayleigh–Plesset (RP) equation. Three modeling approaches are considered: (a) one‐way coupling, where the influence of the bubble on the fluid flow is neglected, (b) two‐way coupling, where the momentum‐exchange between the fluid and the bubbles is modeled, and (c) volumetric coupling, where the volumetric displacement of the fluid by the bubble motion and the momentum‐exchange are modeled. A novel adaptive time‐stepping scheme based on stability‐analysis of the non‐linear bubble dynamics equations is developed. The numerical approach is verified for various single bubble test cases to show second‐order accuracy. Interactions of multiple bubbles with vortical flows are simulated to study the effectiveness of the volumetric coupling approach in predicting the flow features observed experimentally. Finally, the numerical approach is used to perform a large‐eddy simulation in two configurations: (i) flow over a cavity to predict small‐scale cavitation and inception and (ii) a rising dense bubble plume in a stationary water column. The results show good predictive capability of the numerical algorithm in capturing complex flow features. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Strong interaction between a buoyancy bubble and a free surface   总被引:17,自引:0,他引:17  
The growth and collapse of buoyant vapor bubbles close to a free surface in an inviscid incompressible fluid is investigated in this paper. The strong interaction between the deforming bubble and the free surface is simulated numerically by a boundary-integral method (Taib 1985; Blake et al., 1987). Improvements are made in the calculation of the singular integrals, the use of nonuniform boundary elements, and the choice of time-step size. The present numerical results agree better with the experimental observations of Blake and Gibson (1981) than previous numerical predictions for bubbles initiated at one maximum radius from the free surface. There is also concurrence of flow features with the experiments for a bubble initiated as close as half maximum radius from the free surface, where other numerical efforts have failed. The effects of buoyancy on bubbles initiated close to a free surface are also investigated. Vastly different features, depending on the distance of the bubble to the free surface and the buoyancy-force parameter, have been observed.  相似文献   

16.
A two-fluid model suitable for the calculation of the two-phase flow field around a naval surface ship is presented. This model couples the Reynolds-averaged Navier–Stokes (RANS) equations with equations for the evolution of the gas-phase momentum, volume fraction and bubble number density, thereby allowing the multidimensional calculation of the two-phase flow for monodisperse variable size bubbles. The bubble field modifies the liquid solution through changes in the liquid mass and momentum conservation equations. The model is applied to the case of the scavenging of wind-induced sea-background bubbles by an unpropelled US Navy frigate under non-zero Froude number boundary conditions at the free surface. This is an important test case, because it can be simulated experimentally with a model-scale ship in a towing tank. A significant modification of the background bubble field is predicted in the wake of the ship, where bubble depletion occurs along with a reduction in the bubble size due to dissolution. This effect is due to lateral phase distribution phenomena and the generation of an upwelling plume in the near wake that brings smaller bubbles up to the surface. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
固壁空蚀数值研究   总被引:4,自引:0,他引:4  
空蚀是空泡在固壁附近溃灭对固壁材料产生破坏的现象。本文将空泡界面假设为自由面,并由VOF(Volume of Fluid)中界面构造精度较高的Youngs方法求解,通过直接计算原始变量的Navier-Stokes方程,数值模拟了空泡距固壁不同位置时溃灭对固壁造成的空蚀破坏。计算发现空泡溃灭产生高压脉冲相对于高速射流对空蚀形成起主导作用;空泡在流场中位置不同,高压脉冲对固壁上的空蚀破坏结果不同,并给出了距离界限。  相似文献   

18.
The problem of the squeeze film flow of a viscoelastic fluid between parallel, circular disks is analyzed. The upper disk is subject to small, axial oscillations. Lodge's “rubber-like liquid” is used as the viscoelastic fluid model, and fluid inertia forces are included. An exact solution to the equations of motion is obtained involving in-phase and out-of-phase components of velocity field and load, with respect to the plate velocity. Peculiar resonance phenomena in the load amplitude are exhibited at high Deborah number. At certain combinations of Reynolds number and Deborah number, the in-phase and/or out-of-phase velocity field components may attain an unusual circulating type of motion in which the flow reverses direction across the film. In the low Deborah number limit, and in the low Reynolds number limit, the results of this study reduce to those obtained by other workers.  相似文献   

19.
The effect of weak compressibility of a fluid on the interaction between spherical bubbles in a strong acoustic field is considered. A small parameter ɛ which represents the ratio of the characteristic velocity of radial oscillations of the bubbles to the speed of sound in the fluid is used as a parameter characterizing the fluid compressibility. The equations governing the interaction between two bubbles are derived with an accuracy O(ɛ) in the case in which the ratio of the characteristic velocities of their translational and radial motions is of the order of ɛ. It is shown that neglecting the fluid compressibility effect due to the bubble interaction can lead to either enhancement or attenuation of their radial oscillations following the main compression stage, variation in the oscillation frequency, the bubble approach velocity, and the velocity of the spatial motion of the coupled pair, and the bubble approach and collision rather than their moving away from one another with the formation of a coupled pair.  相似文献   

20.
Cantilever structures vibrating in a fluid are encountered in numerous engineering applications. The aerodynamic loading from a fluid can have a large effect on both the resonance frequency and damping, and has been the subject of numerous studies. The aerodynamic loading on a single beam is altered when multiple beams are configured in an array. In such situations, neighboring beams interact through the fluid and their dynamic behavior is modified. In this work, aerodynamic interactions between neighboring cantilever beams operating near their first resonance mode and vibrating at amplitudes comparable to their widths are experimentally explored. The degree to which two beams become coupled through the fluid is found to be sensitive to vibration amplitude and proximity of neighboring components in the array. The cantilever beams considered are slender piezoelectric fans (approximately 6 cm in length), and are caused to vibrate in-phase and out-of-phase at frequencies near their fundamental resonance values. Aerodynamic damping is expressed in terms of the quality factor for two different array configurations and estimated for both in-phase and out-of-phase conditions. The two array configurations considered are for neighboring fans placed face-to-face and edge-to-edge. It is found that the damping is greatly influenced by proximity of neighboring fans and phase difference. For the face-to-face configuration, a reduction in damping is observed for in-phase vibration, while it is greatly increased for out-of-phase vibration; the opposite effect is seen for the edge-to-edge configuration. The resonance frequencies also show a dependence on the phase difference, but these changes are small compared to those observed for damping. Correlations are developed based on the experimental data which can be used to predict the aerodynamic damping in arrays of vibrating cantilevers. The distance at which the beams no longer interact is quantified for both array configurations. Understanding the fluid interactions between neighboring vibrating beams is essential for predicting the dynamic behavior of such arrays and designing them for practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号