首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
含氟丙烯酸酯共聚物制备超疏水表面及其形成机理的研究   总被引:7,自引:0,他引:7  
魏海洋  李欣欣  王康  贺文潇  韩哲文 《化学学报》2008,66(12):1470-1476
以丙烯酸全氟烷基乙基酯和甲基丙烯酸甲酯为共聚单体, 分别以用微乳液聚合法和溶液聚合法制备的无规共聚物和用可逆加成-断裂链转移制备的嵌段共聚物作为成膜共聚物, 并以1,1,2-三氟三氯乙烷作为溶剂, 采用溶剂挥发成膜法可以直接制备出超疏水膜, 聚合物膜对水的接触角可达160°. 改变聚合物结构和成膜条件, 探讨了该类超疏水膜的形成机理和影响因素. 发现膜的表面形貌和疏水性与共聚物的组成、结构、分子量以及成膜条件密切相关, 随着共聚物中氟含量的增大, 膜的表面形貌都趋于平滑; 而且, 无规共聚物比嵌段共聚物更易形成粗糙度好的膜; 同时, 较大的聚合物分子量和适宜的高的成膜温度都对形成粗糙结构有利.  相似文献   

2.
以砂纸为模板制作聚合物超疏水表面   总被引:7,自引:2,他引:5  
报道了一种聚合物材料超疏水表面的简便制备方法. 以不同型号的金相砂纸为模板, 通过浇注成型或热压成型技术, 在聚合物表面形成不同粗糙度的结构. 接触角实验结果证明, 聚合物表面与水的接触角随着所用砂纸模板粗糙度的增加而加大, 其中粒度号为W7和W5砂纸制作的表面与水的接触角可超过150°, 显示出超疏水性质. 多种聚合物使用砂纸为模均可制备不同粗糙度及超疏水的表面, 本征接触角对复制表面浸润性的影响从Wenzel态到Cassie态而变小. 扫描电镜结果表明, 不规则形状的砂纸磨料颗粒构成了超疏水所需要的微纳米结构的模板.  相似文献   

3.
热处理对超疏水性含氟丙烯酸酯共聚物膜表面性能的影响   总被引:3,自引:1,他引:3  
以微乳液聚合法和溶液聚合法制备丙烯酸全氟烷基乙基酯和甲基丙烯酸甲酯的共聚物, 以1,1,2-三氟三氯乙烷为溶剂, 采用溶剂挥发成膜法直接制备出超疏水膜, 并研究120 ℃热处理对超疏水膜表面性能的影响. 对于用乳液聚合方法制备的超疏水膜, 随着热处理时间的延长, 滚动角表现出先逐渐增大直至完全不能滚动, 然后重新回复到极小滚动角的特殊变化过程, 而静态接触角只是略微减小, 完全不同于热处理对平滑的含氟聚合物表面接触角的影响. 扫描电镜结果显示, 聚合物膜表面形貌对应出现从微/纳复合粗糙结构到微孔粗化并重新形成微/纳复合多层粗糙结构的变化.  相似文献   

4.
报道了一种简便的调控聚合物材料表面结构及浸润性能的方法.利用流延成膜和纳米二氧化硅粒子的印迹修饰作用,制备出3种具有不同表面结构的聚氯乙烯(PVC)膜,膜的浸润性能表现为与水的接触角从103°的疏水性变为65°的亲水性,再改变至130°的疏水性.扫描电镜结果表明印迹修饰后的PVC膜具有纳米和微米尺寸的凹凸表面结构.通过对比实验证实了溶剂氯仿和NaOH溶液并不影响膜表面的疏水性能.  相似文献   

5.
利用含氟疏水基团的梯度分布,结合草莓形纳米SiO2粒子提供的双重粗糙表面,制备了具有类"荷叶效应"的超疏水涂膜,水接触角达(174.2±2)°,滞后角几乎接近0°.通过原子力显微镜、扫描电镜和水接触角的测试对膜表面形貌及疏水性能进行了表征;探讨了其表面微观结构与表面疏水性能的关系.草莓形复合粒子在膜表面的无规则排列赋予涂膜表面不同等级的粗糙度,使水滴与涂膜表面接触时能够形成高的空气捕捉率,这种微观结构与疏水基团的梯度分布相结合,赋予了含氟硅丙烯酸酯乳液涂膜表面超疏水性能.  相似文献   

6.
以重氮树脂(DR)/聚丙烯酸(PAA)自组装膜的微图案作为模板, 通过DNA和聚二甲基二烯丙基氯化铵(PDDA)在模板上的层层沉积制备了图案化的DNA膜. 再在其中进行Ag的化学沉积得到图案化的Ag膜. 最后利用低表面能的十二烷基硫醇对Ag膜进行表面修饰, 制备了具有超疏水性质的图案化Ag膜. 其静态接触角达到约168°.  相似文献   

7.
利用静电纺丝法制备了具有低滚动角的超疏水聚苯乙烯膜,建立了基于该超疏水膜的蛋白质微液滴检测方法.超疏水表面确保了球状液滴的形成,使待测样品量由传统方法的上百微升降至10μL.将双缩脲比色检测法与基于超疏水表面的微液滴检测技术相结合,实现了微升量级的牛血清白蛋白(BSA)分子的快速定性及高灵敏定量检测.由于微液滴在超疏水表面浓缩效果更佳,因此检测下限由溶液相检测下限的24.53μmol/L降低到1.490μmol/L.这种蛋白质微液滴检测技术具有一定的普适性.为实现微量生物/化学分子的高灵敏检测提供了新的技术平台.  相似文献   

8.
超疏水表面改善铝基材料的抗海水腐蚀性能   总被引:2,自引:0,他引:2  
刘通  刘涛  陈守刚  程莎  尹衍升 《无机化学学报》2008,24(11):1859-1863
通过聚乙烯亚胺与十四酸的反应,在铝表面构建稳定的超疏水膜。以X射线衍射,原子力显微镜,扫描电镜,接触角测量仪等手段表征超疏水表面的形成机制与表面结构特征,并利用电化学阻抗方法研究了超疏水表面对铝在海水中的腐蚀行为的影响。结果表明,在铝表面形成了一层近似珊瑚状的超疏水膜,海水的接触角大于150°。通过电化学阻抗图谱测试空白样与试样的耐腐蚀性能,表明这种特殊的表面结构的超疏水膜的确降低了铝在海水中的腐蚀速率。  相似文献   

9.
郑建勇  冯杰  钟明强 《高分子学报》2010,(10):1186-1192
以碳酸钙(CaCO3)颗粒层为模板,运用简单的热压和酸蚀刻相结合的方法制备聚合物超亲水/超疏水表面.首先在玻璃基底上均匀铺撒一层CaCO3颗粒,以此作为模板,通过热压线性低密度聚乙烯(LLDPE)使CaCO3颗粒均匀镶嵌在聚合物表面,获得了超亲水性质;进一步经酸蚀得到了具有微米和亚微米多孔结构的表面,其水滴静态接触角(WCA)可达(152.7±0.8)°,滚动角小于3°,具备超疏水性质.表面浸润性能和耐水压冲击性能研究表明该超疏水表面具有良好的稳定性和持久性.用同样工艺微模塑/酸蚀刻其它疏水性聚合物,得到类似结果.  相似文献   

10.
采用简单的激光刻蚀方法制备了具有类“菜花”状多级结构的粗糙聚二甲基硅氧烷(PDMS)膜, 并用CCD与高敏感性微电力学天平观察和测量PDMS表面对水的吸附情况. 结果表明, 该膜表面具有超疏水性, 同时对水滴具有超低的吸附力. 还对其表面特殊多级结构产生的机理进行了分析, 并探讨了在化学组成和表面结构对超疏水性以及吸附性产生的影响.  相似文献   

11.
The surface chemical structure development in solution-cast styrene(S)/butadiene(B) block copolymer films as a function of solvent evaporation time was investigated using sum frequency generation vibrational spectroscopy(SFG).The surface structure formation of the styrene(S)/butadien(B) block copolymer(30 wt% PS) films during the solution-to-film process was found to be controlled mainly by dynamic factors,such as the mobility of the PB block in solution.For SB diblock copolymers,a pure PB surface layer was formed only when the film was cast by dilute toluene solution.With increasing concentration of casting solution,PB and PS components were found to coexist on the film surface,and the morphology of the PB component on the film surface changed from cylindrical rods to spheres.For SBS triblock copolymers,a small amount of PS component existed on the surface even if the film was cast by 1.0 wt% toluene solution.In addition,PS components at the outermost layer of the film increased and the length of PB cylindrical rods on the surface decreased with increasing concentration of casting solution.  相似文献   

12.
The surface properties and abhesion of both N/Si and U/Si series of random copolymers were studied by contact angle and peel strength measurements. When these copolymers are coated on clean glass slides, the contact angles of water on the polymer films are over 105° for copolymers with less than 50 mol % of Si , and 98-104° for those with more than 50 mol % of Si. All the polymers have similar critical surface energies, 21 dyn/cm (from hydrocarbon probes) and 20 dyn/cm (from EtOH/H2O probes), within the experimental error. This demonstrates that the amide groups in the polymer backbones are buried and all the polymers have methyl surfaces. The copolymers with less than 50 mol % Si (for N/Si copolymers) or 20 mol % (for U/Si copolymers) are stable and show good abhesive properties toward Scotch magic tape at or below 50°C. The peel strengths of Scotch magic tape with the copolymer coated slides rise dramatically as the annealing temperatures approach to the melting points of the polymers.  相似文献   

13.
The surface properties of three undecyl oxazoline homopolymers and two phenyl/undecyl oxazoline block copolymers (as comparison) were studied. After coating on glass slides and annealing, all films had a low critical surface energy of 21 dynes/cm. Water contact angles were higher than 107° for the most hydrophobic films. The deduction that the polymer surfaces contained close-packed methyl groups was further confirmed by electron spectroscopy chemical analysis (ESCA) angle profiling on an annealed undecyl oxazoline homopolymer film. A model was developed for the variation of elemental ratios as a function of photoelectron take-off angle. This verified that the polymer films had the polymer backbones parallel to the surface with the undecyl tails oriented toward the surface. When these block and homopolymers were coated on copy paper and glass slides, the peel strengths of pressure-sensitive adhesives with these surfaces were very low for short dwell times at room temperature. At long dwell times or at elevated temperatures, the peel strengths remained low for the homopolymers but increased greatly for the block copolymers to values higher than those in the tape on glass. After 24 h at 70°C, ESCA analysis showed that the adhesive diffused into the phenyl block domains of the diblock copolymer, generating high peel strength and cohesive failure. However, under the same annealing conditions, the triblock copolymer showed adhesive failure while peel strength increased. ESCA analysis showed very litle diffusion of the adhesive into the triblock copolymer. The homopolymers were stable toward vinyl acetate type adhesives even at elevated temperature; they were abhesive up to 100°C with no interdiffusion.  相似文献   

14.
Physicomechanical and surface properties of films of copolymers of methacrylic acid with methyl acrylate, which have close compositions and molecular masses (Mn ≈ 5.7 × 104) and various chain structures (gradient copolymer and statistical copolymer), were studied. The thermodynamic characteristics of the copolymers were determined; two glass-transition points (29.6 and 141.0°C) were found for the gradient copolymer, and one glass-transition point of 40.1°C, for the copolymer with a statistical distribution of units along the chain. It was found that more mechanically strong films with tensile stress of 2.8 MPa are characteristic of the gradient copolymer. The wetting method was used to determine by using the Hood–Kaelble–Dann–Fowkes approach the surface Gibbs energies of the films and their polar and dispersion components. Atomic-force microscopy was used to find heterogeneities (0.1–0.3 μm) on the surface of a film of a statistical copolymer, whereas the film of a gradient polymer has a homogeneous structure.  相似文献   

15.
Random and block sulfonated poly(meta‐phenylene isopthalamide)s as proton exchange membranes were synthesized through the Higashi‐Yamazaki phosphorylation method. Polymers with different degrees of sulfonation from 40 to 100 mol percent were prepared by adjusting the molar feed ratio of 5‐sulfoisophthalic acid sodium salt (SIPA) and isophthalic acid (IPA) in the reaction with meta‐phenylene diamine. Creasable polymer films were obtained by casting DMSO polymer solutions and the membrane films could be exchanged to the proton form in strong acid. 1H NMR spectroscopy and titration confirmed the degree of sulfonation. Thermogravimetric analysis demonstrated good thermal stabilities with 5% weight loss greater than 380 °C. The copolymers with low degrees of sulfonation (DS = 40 mol %) exhibited low water uptake (water uptake < 17 wt %) at room temperature. A segmented multiblock copolymer prepared by preforming a sulfonated block showed lower water uptake at high temperatures than the random polymer with the same DS of 40 mol % and displayed stability in water up to 80 °C. Both random and block copolymers showed higher proton conductivities at high temperature than that of Nafion‐117 under 95% relative humidity. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2582–2592  相似文献   

16.
In many applications surfaces are modified using polymer films and the polymers used are often complex copolymers. In biomedical applications it is critical to determine the surface properties of a substrate as it is these that mediate the cellular interactions. The surface structure of copolymer films can only rarely be established from their bulk composition alone. In this study angle resolved XPS was used to build a model of the structure of copolymer films produced on glass substrates from a family of poly(acrylamide) copolymers containing cationic blocks. The thickness of the copolymer films was demonstrated to be dependent on the concentration of the polymer solution and the ratio of non‐cationic to cationic blocks in the copolymer. The data demonstrated that the cationic blocks of the copolymer preferentially segregated to the glass surface and the non‐cationic poly(acrylamide) blocks preferentially segregated to the air–vacuum interface. A low concentration of the cationic functional groups was present throughout the poly(acrylamide) layer and it was suggested that this resulted from a small fraction of the cationic blocks being pulled into the poly(acrylamide) layer at points along the polymer chain where the two blocks are connected. Evidence of a thin surface hydrocarbon contamination layer was also observed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Statistical copolymers of perfluoroalkyl ethyl methacrylate (Zonyl-TM) and methylmethacrylate were synthesized in CO2-expanded monomer mixture at a low pressure of 10–13 MPa for the first time. M w of the copolymers was found to decrease with the increase of Zonyl-TM content. Flat films of these copolymers were obtained by dip coating from their chloroform solutions and were characterized using contact angle measurements, optical microscopy, and 3D profilometry. The increase in the Zonyl-TM content of the copolymers resulted in a decrease of the total surface free energy. Superhydrophobic and oleophobic rough copolymer films were also prepared by applying a phase-separation process where THF was used as the solvent and ethanol as the non-solvent. Surface roughness increased with the increase in the nonsolvent ratio resulting in an increase in the water contact angle from 103° to 151° and hexadecane contact angle from 49° to 73°.  相似文献   

18.
A series of random copolymers of N‐isopropylacrylamide (NIPAM) and sodium 2‐acrylamido‐2‐methyl‐1‐propanesulphonate (AMPS) was synthesized by free‐radical copolymerization. The content of AMPS in the copolymers ranged from 1.1 to 9.6 mol %. The lower critical‐solution temperature (LCST) of copolymers in water increased strongly with an increasing content of AMPS. The influence of polymer concentration on the LCST of the copolymers was studied. For the copolymers with a higher AMPS content, the LCST decreased faster with an increasing concentration than for copolymers with a low content of AMPS. For a copolymer containing 1.1 mol % of AMPS the LCST dropped by about 3 °C when the concentration increased from 1 to 10 g/L, whereas for a copolymer containing 9.6 mol % of AMPS the LCST dropped by about 10 °C in the concentration range from 2 to 10 g/L. It was observed that the ionic strength of the aqueous polymer solution very strongly influences the LCST. This effect was most visible for the copolymer with the highest content of AMPS (9.6 mol %) for which an increase in the ionic strength from 0.2 to 2.0 resulted in a decrease in the LCST by about 27 °C (from 55 to 28 °C), whereas for the copolymer containing 1.1 mol % of AMPS the LCST decreased only by about 6 °C (from 37 to 31 °C) when the ionic strength increased from 0.005 to 0.3. The reactivity ratios for the AMPS and NIPAM monomer pairs were determined using different methods. The values of rAMPS and rNIPAM obtained were 11.0–11.6 and 2.1–2.4, respectively. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2784–2792, 2001  相似文献   

19.
An improved technique for casting highly oriented films of block copolymers from solutions subjected to flow is presented. Polymer solutions were rolled between two counter-rotating adjacent cylinders while at the same time the solvent was allowed to evaporate. As the solvent evaporated, the block copolymers microphase separated into globally oriented structures. Using this method known as ‘roll-casting’ we present in this paper a study of the morphology of polystyrene-polybutadiene-polystyrene (PS/PB/PS) triblock copolymer cast with and without additional high molecular weight homopolymers. The pure copolymer films consisted of polystyrene cylinders assembled on a hexagonal lattice in a polybutadiene matrix in a near single-crystal structure. Blends of copolymer with high molecular weight polystyrene and/or polybutadiene, phase separated into ellipsoidal regions of homopolymer embedded in an oriented block copolymer matrix. Annealing the films resulted in conversion of the homopolymer regions to spheres accompanied by some misalignment of the copolymer microdomains. The morphology of these films as revealed by TEM is discussed. A brief discussion of the flow field that develops in the experimental system is also presented and its similarity to the flow field of our previous work is shown. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号