首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
PTFE及UHMWPE改性PA6复合材料的摩擦学性能研究   总被引:1,自引:1,他引:0  
采用熔融共混法制备了聚四氟乙烯(PTFE)和超高分子量聚乙烯(UHMWPE)改性的两种聚酰胺6(PA6)复合材料,研究了改性PA6复合材料的摩擦学性能,通过扫描电子显微镜观察复合材料的磨损表面,并对其磨损机理进行了分析.结果表明:使用单一润滑剂改性,添加量相同时,PTFE比UHMWPE改性的PA6复合材料具有更优的摩擦学性能;使用复合润滑剂改性时,PA6复合材料获得了比使用单一润滑剂改性时更好的摩擦学性能;添加不同种类的固体润滑剂,PA6复合材料的磨损表面呈现不同的形态特征,表现出不同的磨损机理.  相似文献   

2.
仿生多孔超高分子量聚乙烯的摩擦磨损性能研究   总被引:3,自引:0,他引:3  
模拟天然关节软骨中"多孔可渗透软垫层"的特征,采用模板-滤取工艺制备具有多孔结构的超高分子量聚乙烯(UHMWPE)仿生人工软骨材料,采用改进的四球摩擦磨损试验机研究多孔结构和UHMWPE分子量对试样摩擦磨损性能的影响,利用扫描电子显微镜观察多孔材料的表面形貌并分析其磨损机理.结果表明,多孔结构能够提高UHMWPE试样在牛血清润滑条件下的耐磨性.试样的孔隙率约为27%,UHMWPE分子量的改变对试样的失重和孔隙率影响不大,但能够略微降低多孔UHMWPE试样的磨损量.在干摩擦条件下,多孔试样的磨损量比普通试样高66.9%,在牛血清润滑下的磨损量比普通UHMWPE低46.6%.UHMWPE的多孔结构能够提高UHMWPE试样表面的润滑性能,降低其磨损量.  相似文献   

3.
碳黑填充超高分子量聚乙烯复合材料摩擦磨损性能研究   总被引:7,自引:5,他引:7  
采用MM-200型摩擦磨损试验机考察了载荷及偶件表面粗糙度对碳黑填充超高分子量聚乙烯(UHMWPE)复合材料摩擦磨损性能的影响;利用扫描电子显微镜观察复合材料磨损表面形貌并分析了其磨损机理.结果表明:同UHMWPE相比,碳黑填充UHMWPE的磨损质量损失随载荷增加而增大的幅度较小;偶件表面粗糙度对碳黑填充UHMWPE复合材料的摩擦磨损性能影响较大,随着偶件表面粗糙度的增大,摩擦系数和复合材料的磨损质量损失均显著增大.UHMWPE及其碳黑填充复合材料在干摩擦条件下同45“钢及SiC喷涂层涂覆45“钢对摩时主要呈现犁削和塑性变形特征,犁削和塑性变形程度随载荷和偶件表面粗糙度增加而加剧。  相似文献   

4.
采用热压成型工艺制备了纳米ZnO填充超高分子量聚乙烯(UHMWPE)复合材料,采用销-盘式摩擦磨损试验机考察了纳米粒子对复合材料摩擦磨损性能的影响;采用扫描电子显微镜观察复合材料磨损表面形貌.结果表明:填充15%~20%的纳米ZnO可以显著改善UHMWPE的摩擦磨损性能;复合材料的磨损机理随纳米粒子含量的增加而变化,纯UHMWPE的磨损机理主要为粘着磨损和疲劳磨损,随着复合材料中纳米粒子含量增加,疲劳磨损特征逐渐消失,当其纳米粒子含量大于15%时,其磨损机理主要为粘着磨损;复合材料磨损表面出现了贫ZnO区和富ZnO区,且富ZnO区以"岛"的形式分布在贫ZnO区中.  相似文献   

5.
采用MM - 2 0 0型摩擦磨损试验机考察了载荷及对摩偶件表面SiC粒度对超高分子量聚乙烯及其纳米Al2 O3填充复合材料摩擦磨损性能的影响 ,利用扫描电子显微镜观察磨损表面形貌并分析了其磨损机理 .结果表明 :纳米Al2 O3 可以提高超高分子量聚乙烯的硬度及抗磨粒磨损性能 ;随着载荷的增大 ,超高分子量聚乙烯及纳米填充复合材料的磨损加剧 ;纳米Al2 O3 填充超高分子量聚乙烯复合材料的摩擦系数较超高分子量聚乙烯的略有增大 ;纳米Al2 O3 含量的增加有利于超高分子量聚乙烯复合材料抗磨粒磨损性能的提高 ;偶件表面喷涂SiC粒度的大小对超高分子量聚乙烯及其纳米Al2 O3 填充复合材料的磨损影响较大  相似文献   

6.
将所合成的乙二胺缩水杨醛Schiff碱铜(Ⅱ)络合物和甘油-聚乙烯微胶囊与超高分子量聚乙烯(UHMWPE)共混制备出改性UHMWPE材料,利用销-盘式摩擦磨损试验机评价Schiff碱铜(Ⅱ)络合物和甘油.聚乙烯微胶囊改性UHMWPE/GCr15钢配副在高速干摩擦条件下的摩擦磨损性能,利用扫描电子显微镜观察其磨损表面形貌,采用电子能谱仪分析磨损表面的主要元素组成并探讨其磨损机理.结果表明,由于其独特的自身选择性转移效应使得耐磨性提高,在高速干摩擦条件下没有严重的粘着磨损.  相似文献   

7.
采用模压法制备了聚丙烯(PP)和MoS2填充超高分子量聚乙烯(UHMWPE)复合材料;在MM-200型摩擦磨损试验机上考察了UHMWPE/PP/MoS2复合材料的摩擦磨损性能;采用扫描电子显微镜观察分析复合材料磨损表面形貌.结果表明:单独添加MoS2可以提高UHMWPE的抗磨性能,但摩擦系数增大、力学性能降低;而采用PP和MoS2对UHMWPE进行改性可以显著改善加工性能;72.7%UHMWPE/18.2%PP/9.1%MoS2三元复合材料的加工性能、承载能力和长时抗磨性能明显优于UHMWPE;UHMWPE主要发生粘着磨损和疲劳磨损;而72.7%UHMW-PE/18.2%PP/9.1%MoS2三元复合材料在相同试验条件下同钢对摩时仅发生轻微塑性变形.  相似文献   

8.
超高分子量聚乙烯(UHMWPE)轴承材料在低速重载工况下常发生严重磨损,通过添加改性填料能够显著提升其摩擦学性能. 凹凸棒土(ATP)作为一种改性填料能够增强基体材料的机械性能进而改善其摩擦特性,但是ATP作为填料往往会因为团聚效应而降低材料的补强效果. 通过对ATP进行表面改性处理可克服团聚效应,实现ATP与基体间的均匀共混. 通过表面化学包覆改性法制备由硅烷偶联剂KH570改性处理的ATP与UHMWPE共混制成复合材料,并与纯UHMWPE材料作对照试验. 利用RTEC摩擦试验机研究复合材料在水润滑条件下摩擦系数随载荷和转速的变化,以及材料填充含量对复合材料在低速重载(v=0.55 m/s、Fz=55 N)工况下磨损性能的影响. 利用傅里叶变换红外光谱仪(FTIR)、X射线衍射仪(XRD)、差示扫描量热仪(DSC)与电子万能材料试验机分别对ATP改性效果、熔融结晶行为及复合材料的重要力学性能进行表征测试. 试验结束后,利用表面轮廓仪与激光共聚焦显微镜观察复合材料表面形貌并分析其磨损机理. 结果表明:硅烷偶联剂KH570对ATP的改性效果良好,填充改性ATP能提高材料的邵氏硬度,且材料的拉伸性能随填充含量的提高呈下降趋势;对比纯UHMWP材料,复合材料的摩擦系数更低,适量的ATP填充能改善材料磨损性能,减小体积磨损率;试验中改性ATP质量分数为1%的复合材料其摩擦学性能最优,在低速重载时的摩擦系数及体积磨损率与纯UHMWPE相比分别降低了52.45%和37.58%.   相似文献   

9.
滑动模式对超高分子量聚乙烯摩擦磨损行为的影响   总被引:3,自引:1,他引:2  
在自行研制的髋关节模拟试验机上,以交叉滑动及单向滑动2种方式对比考察了蒸馏水润滑条件下超高分子量聚乙烯(UHMWPE)的摩擦磨损性能,采用扫描电子显微镜观察分析了UHMWPE的磨损表面形貌并探讨其磨损机理.结果表明:在相同载荷条件下,UHMWPE在交叉滑动方式下的磨损率明显高于单向滑动方式;在交叉滑动方式下,UHMWPE的主要磨损机制为磨粒磨损、粘着磨损及塑性变形引起的表层剥落,而在单向滑动下其磨损形式主要为磨粒磨损伴随着少量的疲劳剥片;不同滑动方式所导致的磨损机理差异是造成UHMWPE磨损性能变化的主要原因.与其它试验方式相比,在髋关节模拟试验机上所得出的试验数据更接近临床观测结果.  相似文献   

10.
传统的船舶尾轴油润滑轴承的润滑油泄露造成了严重的海洋污染,逐渐被水润滑轴承取代,但水较差的承载能力要求水润滑轴承具有良好的减磨耐磨性能. 通过HDPE与PA66的共混材料研究尼龙润滑填料和表面织构协同作用对水润滑轴承摩擦磨损性能的影响,利用超景深三维显微系统测量共混材料试样浸泡后的表面纹理结构,利用CBZ-1摩擦磨损试验机对试样进行摩擦试验并记录摩擦系数,利用表面轮廓仪和扫描电镜(SEM)观察试样磨损形貌并分析其磨损机理. 试验表明:PA66的添加能优化共混材料的摩擦学性能. PA66的水溶胀性使共混材料表面形成微凸织构,降低摩擦系数和减轻表面磨损;PA66的存在可使共混材料在摩擦过程中在对摩铜盘表面形成转移膜,有效保护摩擦副表面,减轻磨损.   相似文献   

11.
采用UMT-3MT往复式滑动摩擦磨损试验机,研究在透明质酸钠(SHA)润滑介质下,氧化石墨烯(GO)对基体材料超高分子量聚乙烯(UHMWPE)摩擦学性能的影响.利用高分辨扫描电子显微镜(HR-SEM)和MicroXAM非接触式3D表面轮廓仪观察试样表面磨痕形貌并计算其磨损率.结果表明:在SHA润滑介质下,无机填料GO的添加显著降低UHMWPE基复合材料的磨损率,但是,GO的添加对复合材料稳态摩擦系数和残留在SHA润滑介质中的磨粒特征无明显影响.无机填料GO的添加增强了UHMWPE在SHA润滑介质下的耐磨性能.  相似文献   

12.
采用往复式滑动摩擦磨损试验机,考察了在胎牛血清蛋白(BSA)润滑环境下,氧化石墨烯/超高分子量聚乙烯(GO/UHMWPE)复合材料的摩擦学性能.试验结束后,利用高分辨扫描电子显微镜(HR-SEM)和Micro-XAM非接触式三维表面轮廓仪观察试样表面磨痕并计算相应的磨损率.结果表明:在BSA润滑环境下,相对纯UHMWPE,尽管无机增强填料GO的添加可以显著降低复合材料的稳态摩擦系数(COF),但是随GO含量增加无明显变化.然而,复合材料的体积磨损率(WR)却随GO含量增加呈现出逐渐减小的趋势.因此无机填料GO可以显著改善UHMWPE在BSA润滑环境下的摩擦学性能.  相似文献   

13.
为建立含氟聚合物的使用性能与干湿工作环境的关系,采用热压成型的方式制备聚四氟乙烯(PTFE)试样,并通过挤出注塑成型方法制得可熔融加工PTFE (M-PTFE)/聚全氟乙丙烯(FEP)共混物.研究PTFE和FEP的相关性能,特别是M-PTFE/FEP共混物的力学性能以及在干、湿状态下的摩擦磨损性能.结果表明:在研究的配比范围内,共混材料的拉伸强度随着M-PTFE含量的增加而增大.干摩擦条件下,M-PTFE的质量分数≤20%时,增加MPTFE含量可降低试样的摩擦系数与体积磨损率,但M-PTFE的质量分数达到30%时两个参数均会增大.湿摩擦条件下,试样的摩擦系数和体积磨损率与M-PTFE的添加量之间无规律性,但都低于干摩擦条件的值.对磨面形貌的SEM照片分析表明:在干摩擦条件下,增加M-PTFE添加量会促进转移膜的形成和完善,但湿摩擦会抑制转移膜的形成.  相似文献   

14.
以钛酸四丁酯为前驱体,凹凸棒石(ATP)为载体,分别采用溶胶凝胶法和蒸汽法制备了两种不同形貌的凹凸棒石-二氧化钛(ATP-TiO2)杂化材料,并以质量分数为5%的含量填充超高分子量聚乙烯(UHMWPE). 通过对比相同微动摩擦条件下超高分子量聚乙烯、凹凸棒石及凹凸棒石-二氧化钛杂化填料填充超高分子量聚乙烯复合材料的摩擦学性能,探究了凹凸棒石-二氧化钛杂化材料微观形貌影响复合材料微动磨损性能的机理. 结果表明:杂化材料的耐热性能较凹凸棒石有显著提升;蒸汽法制备ATP-TiO2杂化材料的比表面积更大,在基体中分散更均匀,与基体的界面结合性更好,在摩擦过程中能够有效地承载,并促进转移膜的生成,其改性的复合材料表现出最低的摩擦系数和磨损率.   相似文献   

15.
采用45钢销和尼龙PA66盘,运用正交试验法在MMW-1A万能摩擦磨损试验机上研究干滑动摩擦条件下速度、载荷和金属销表面粗糙Ra对45钢/PA66配副摩擦学性能的影响. 通过极差分析与方差分析发现:载荷、粗糙度对摩擦系数与磨损量有显著影响,而速度影响相对较小. 当载荷为50 N,速度为11.25 m/s,Ra为0.60 μm时,摩擦系数与磨损量最小. 基于正交试验的最优结果,开展控制变量试验,试验结果表明:载荷小于90 N时,PA66以黏着磨损为主;载荷为90 N时,PA66磨损形式为犁削磨损和黏着磨损. 载荷为140 N时,PA66的磨损形式为黏着磨损并伴有胶合现象的产生. Ra小于0.46 μm时,PA66以黏着磨损为主;Ra为0.46 μm时,PA66的磨损形式为黏着磨损和犁削磨损且在对偶金属销表面上形成连续的转移膜;Ra大于0.46 μm时,PA66以犁削磨损为主.   相似文献   

16.
相变微胶囊改性UHMWPE复合材料的摩擦学性能   总被引:2,自引:2,他引:0  
以石蜡为囊芯,蜜胺树脂为高分子囊壁材料,采用原位聚合法制备了相变微胶囊,并将其作为填料添加入超高分子量聚乙烯基体中,制得相变微胶囊改性UHMWPE复合材料.分析了该复合材料的硬度和物相组成,并研究了其在室温,低速和高速试验条件下的摩擦磨损性能.结果表明:微胶囊填料的加入可以起到较好的减摩降磨作用,填料的最适宜添加比例为20%,在低速试验条件下经改性的复合材料摩擦系数较纯UHMWPE降低60%以上,高速试验条件下改性后的复合材料耐磨性较之纯UHMWPE有明显提高,不同试验条件下材料呈现不同的磨损机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号