首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The canonical and microcanonical distributions of energy among the normal modes of an anharmonic chain with nearest-neighbor interactions and free ends are examined. If the interparticle potential is an even function, then energy is distributed uniformly among the normal modes at all energy densities. If the interparticle potential is not an even function but includes quadratic, cubic, and quartic terms, then the energy sharing among the normal modes is also uniform in both the small- and large-energy density limits. At large energies, in this latter case the energy per normal mode scales as the square root of the energy density. Thus we find equipartition of energy among the normal modes of an anharmonic chain. The sum of the normal mode energies is less than the total energy of the chain.  相似文献   

2.
There exist several standard numerical methods for integrating ordinary differential equations. However, if one is interested in integration of Hamiltonian systems, these methods can lead to wrong results. This is due to the fact that these methods do not explicitly preserve the so-called ‘symplectic condition’ (that needs to be satisfied for Hamiltonian systems) at every integration step. In this paper, we look at various methods for integration that preserve the symplectic condition.  相似文献   

3.
We show that the concept of dynamical monodromy plays a natural fundamental role in the spatiotemporal dynamics of counterpropagating nonlinear wave systems. By means of an adiabatic change of the boundary conditions imposed to the wave system, we show that Hamiltonian monodromy manifests itself through the spontaneous formation of a topological phase singularity (2π- or π-phase defect) in the nonlinear waves. This manifestation of dynamical Hamiltonian monodromy is illustrated by generic nonlinear wave models. In particular, we predict that its measurement can be realized in a direct way in the framework of a nonlinear optics experiment.  相似文献   

4.
5.
The problem of the existence of a strong stochasticity threshold in the FPU- model is reconsidered, using suitable microcanonical observables of thermodynamic nature, like the temperature and the specific heat. Explicit expressions for these observables are obtained by exploiting rigorous methods of differential geometry. Measurements of the corresponding temporal autocorrelation functions locate the threshold at a finite value of the energy density, which is independent of the number of degrees of freedom.  相似文献   

6.
An approximate renormalization procedure is derived for the HamiltonianH(v,x,t)=v2/2–M cosx–P cosk(x–t). It gives an estimate of the large scale stochastic instability threshold which agrees within 5–10% with the results obtained from direct numerical integration of the canonical equations. It shows that this instability is related to the destruction of KAM tori between the two resonances and makes the connection with KAM theory. Possible improvements of the method are proposed. The results obtained forH allow us to estimate the threshold for a large class of Hamiltonian systems with two degrees of freedom.  相似文献   

7.
A method of controlling global stochasticity in Hamiltonian systems by applying nonlinear perturbation is proposed. With the well-known standard map we demonstrate that this control method can convert global stochasticity into regular motion in a wide chaotic region for arbitrary initial condition, in which the control signal remains very weak after a few kicks. The system in which chaos has been controlled approximates to the original Hamiltonian system, and this approach appears robust against small external noise. The mechanism underlying this high control efficiency is intuitively explained. Received 15 January 2002 Published online 6 June 2002  相似文献   

8.
The relation between chaotic dynamics of nonlinear Hamiltonian systems and equilibrium statistical mechanics in its canonical ensemble formulation has been investigated for two different nonlinear Hamiltonian systems. We have compared time averages obtained by means of numerical simulations of molecular dynamics type with analytically computed ensemble averages. The numerical simulation of the dynamic counterpart of the canonical ensemble is obtained by considering the behavior of a small part of a given system, described by a microcanonical ensemble, in order to have fluctuations of the energy of the subsystem. The results for the Fermi-Pasta-Ulam model (i.e., a one-dimensional anharmonic solid) show a substantial agreement between time and ensemble averages independent of the degree of stochasticity of the dynamics. On the other hand, a very different behavior is observed for a chain of weakly coupled rotators, where linear exchange effects are absent. In the high-temperature limit (weak coupling) we have a strong disagreement between time and ensemble averages for the specific heat even if the dynamics is chaotic. This behavior is related to the presence of spatially localized chaos, which prevents the complete filling of the accessible phase space of the system. Localized chaos is detected by the distribution of all the characteristic Liapunov exponents.  相似文献   

9.
The stochastic optimal control of partially observable nonlinear quasi-integrable Hamiltonian systems is investigated. First, the stochastic optimal control problem of a partially observable nonlinear quasi-integrable Hamiltonian system is converted into that of a completely observable linear system based on a theorem due to Charalambous and Elliot. Then, the converted stochastic optimal control problem is solved by applying the stochastic averaging method and the stochastic dynamical programming principle....  相似文献   

10.
By applying Hamiltonian averaging and a quasi-identity-like transformation it is demonstrated that the averaged dynamics of high-frequency nonlinear waves in systems with periodically varying dispersion can be described in a particular limit by the integrable nonlinear Schrödinger equation.  相似文献   

11.
The augmented Langevin approach described in a previous article is applied to the problem of introducing multiplicative noise and nonlinear dissipation into an arbitrary Hamiltonian system in a thermodynamically consistent way, so that a canonical equilibrium distribution is approached asymptotically at long times. This approach leads to a general nonlinear fluctuation-dissipation relation which, for a given form of the multiplicative noise (chosen on physical grounds), uniquely determines the form of the nonlinear dissipative terms needed to balance the fluctuations. In addition to the noise and dissipation terms, the augmented Langevin equation contains an additional term whose form depends on the stochastic interpretation rule used. This term vanishes when the Stratonovich rule is chosen and the noise itself is of a Hamiltonian origin. This development provides a simple phenomenological route to results previously obtained by detailed analysis of microscopic system-bath models. The procedure is illustrated by applications to a mechanical oscillator with fluctuating frequency, a classical spin in a fluctuating magnetic field, and the Brownian motion of a rigid rotor.  相似文献   

12.
We introduce the notion of a real form of a Hamiltonian dynamical system in analogy with the notion of real forms for simple Lie algebras. This is done by restricting the complexified initial dynamical system to the fixed point set of a given involution. The resulting subspace is isomorphic (but not symplectomorphic) to the initial phase space. Thus to each real Hamiltonian system we are able to associate another nonequivalent (real) ones. A crucial role in this construction is played by the assumed analyticity and the invariance of the Hamiltonian under the involution. We show that if the initial system is Liouville integrable, then its complexification and its real forms will be integrable again and this provides a method of finding new integrable systems starting from known ones. We demonstrate our construction by finding real forms of dynamics for the Toda chain and a family of Calogero-Moser models. For these models we also show that the involution of the complexified phase space induces a Cartan-like involution of their Lax representations.Received: 8 October 2003, Published online: 8 June 2004PACS: 02.30.Ik Integrable systems - 45.20.Jj Lagrangian and Hamiltonian mechanics  相似文献   

13.
A method, called beatification, is presented for rapidly extracting weakly nonlinear Hamiltonian systems that describe the dynamics near equilibria of systems possessing Hamiltonian form in terms of noncanonical Poisson brackets. The procedure applies to systems like fluids and plasmas in terms of Eulerian variables that have such noncanonical Poisson brackets, i.e., brackets with nonstandard and possibly degenerate form. A collection of examples of both finite and infinite dimensions is presented.  相似文献   

14.
The study is reported of a diffusion in a model of degenerate Hamiltonian systems. The Hamiltonian under consideration is the sum of a linear function of action variables and a periodic function of angle variables. Under certain choices of these functions the diffusion of action variables exists. In the case of two degrees of freedom during the process of diffusion, the vector of the action variables returns many times near its initial value. In the case of three degrees of freedom the choice of Hamiltonian allows one to obtain a diffusion rate faster than any prescribed one. (c) 1998 American Institute of Physics.  相似文献   

15.
Vector fields whose flow preserves a symplectic form up to a constant, such as simple mechanical systems with friction, are called “conformal”. We develop a reduction theory for symmetric conformal Hamiltonian systems, analogous to symplectic reduction theory. This entire theory extends naturally to Poisson systems: given a symmetric conformal Poisson vector field, we show that it induces two reduced conformal Poisson vector fields, again analogous to the dual pair construction for symplectic manifolds. Conformal Poisson systems form an interesting infinite-dimensional Lie algebra of foliate vector fields. Manifolds supporting such conformal vector fields include cotangent bundles, Lie–Poisson manifolds, and their natural quotients.  相似文献   

16.
Ji-Huan He 《Physics letters. A》2010,374(23):2312-2314
A Hamiltonian approach to nonlinear oscillators is suggested. A conservative oscillator always admits a Hamiltonian invariant, H, which keeps unchanged during oscillation. This property is used to obtain approximate frequency-amplitude relationship of a nonlinear oscillator with acceptable accuracy. Two illustrating examples are given to elucidate the solution procedure.  相似文献   

17.
It is shown that Hamiltonian systems can exhibit the phenomenon of chaotic synchronization. Specific attention is paid to the standard map. Analytic synchronization conditions are derived and numerically verified for the standard map. We report on experimental studies of an analog electronic circuit realization of a "piecewise linear standard map." When coupled appropriately to a duplicate circuit, chaotic synchronization is observed. The relevance of this study to synchronization in other Hamiltonian systems is discussed.  相似文献   

18.
We derive an algorithm for the construction of all the gauge generators of a constrained hamiltonian theory. Dirac's conjecture that all secondary first-class constraints generate symmetries is revisited and replaced by a theorem. The algorithm is applied to Yang-Mills theories and metric gravity, and we find generators which operate on the complete set of canonical variables, thus producing the correct transformation laws also for the unphysical coordinates. Finally we discuss the general structure of the Hamiltonian for constrained theories. We show how in most cases one can read off the first-class constraints directly from the Hamiltonian.  相似文献   

19.
A family of models determined by a smooth canonical 2D-map that depends on two parameters is studied. Preliminary results of numerical experiments are reported; they are evidence of substantial suppression of global diffusion in a wide range of perturbation values. This effect is caused by the little-known phenomenon of the conservation of resonance separatrices and other invariant curves under the conditions of strong local dynamic chaos. Such a total suppression of diffusion occurs although invariant curves are only conserved for a countable zero-measure set of parameter values. Simple refined estimates of diffusion rates in smooth systems without invariant curves were obtained and numerically substantiated. The principal boundary of diffusion suppression in a family of models with invariant curves was described by a semiempirical equation in dimensionless variables. The results were subjected to a statistical analysis, and an integral distribution for diffusion suppression probability was obtained.  相似文献   

20.
The sensitivity of the evolution of quantum uncertainties to the choice of the initial conditions is shown via a complex nonlinear Riccati equation leading to a reformulation of quantum dynamics. This sensitivity is demonstrated for systems with exact analytic solutions with the form of Gaussian wave packets. In particular, one-dimensional conservative systems with at most quadratic Hamiltonians are studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号